loj#6229. 这是一道简单的数学题 (??反演+杜教筛)
题意:给定\(n\le 10^9\),求:\(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\),对1e9+7取模
推式子:
\(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\)
\(=\sum_{i=1}^n\sum_{j=1}^i\frac{ij}{\gcd^2(i,j)}\)
\(=\sum_{p=1}^n\frac1{p^2}\sum_{i=1}^n\sum_{j=1}^iij[\gcd(i,j)=p]\)
\(=\sum_{p=1}^n\sum_{i=1}^{n/p}\sum_{j=1}^{i/p}ij[\gcd(i,j)=1]\)
\(=\sum_{p=1}^n\sum_{i=1}^{n/p}i\sum_{j=1}^{i/p}j[\gcd(i,j)=1]\)
根据一个经典式子:\(\sum_{i=1}^ni[\gcd(i,n)=1]=\frac {[n=1]+n\varphi(n)}{2}\)
\(=\sum_{p=1}^n\sum_{i=1}^{n/p}i\frac{[i=1]+i\varphi(i)}{2}\)
\(=\frac {n+\sum_{i=1}^n\lfloor\frac n i\rfloor i^2\varphi(i)}2\)
现在我们考虑求\(\sum_{i=1}^n\lfloor\frac n i\rfloor i^2\varphi(i)\),暴力线性筛是\(O(n)\)的,显然会T,考虑用杜教筛优化
设\(f(i)=i^2\varphi(i),S(n)=\sum_{i=1}^nf(i)\)
原式=\(\sum_{i=1}^n\lfloor\frac n i\rfloor f(i)\)
由于\(\lfloor\frac ni\rfloor\)的取值只有\(O(\sqrt n)\)种,所以可以计算每一块比下一块多多少,然后计算下前缀和
这块可能不太好理解,例如n=11时
ans=11f(1)+5f(2)+3f(3)+2(f(4)+f(5))+1(f(6)+...+f(11)),替换成S则有
ans=(11-5)S(1)+(5-3)S(2)+(3-2)S(3)+(2-1)S(5)+S(11)
直接上杜教筛就行了,因为这些取值在计算S(11)时候都要用到,并且每个n/x只有一种,开个数组记忆化即可
代码里枚举的顺序不太一样,是从S大到S小一样,两块的差就相当于某一块的大小
#include <cstdio>
using namespace std;
const int p = 1000000007, fuck = 1000000;
bool vis[fuck + 233];
int prime[fuck], tot;
int phi[fuck + 233];
int qpow(int x, int y)
{
int res = 1;
while (y > 0)
{
if (y & 1) res = res * (long long)x % p;
x = x * (long long)x % p;
y >>= 1;
}
return res;
}
int inv2 = qpow(2, p - 2), inv6 = qpow(6, p - 2);
int s1(int x) { x %= p; return x* (long long)(x + 1) % p * inv2 % p; }
int s2(int x) { x %= p; return x * (long long)(x + 1) % p * (x * 2 + 1) % p * inv6 % p; }
int s3(int x) { return qpow(s1(x), 2); }
bool count[4000010];
int ans[400010], n;
int chuans(int x)
{
if (x <= fuck) { return phi[x]; }
if (count[n / x]) return ans[n / x];
count[n / x] = 1;
int res = s3(x);
for (int i = 2, j; i <= x; i = j + 1)
{
j = x / (x / i);
res = ((res - (s2(j) - s2(i - 1)) * (long long)chuans(x / i) % p) % p + p) % p;
}
return ans[n / x] = res;
}
int main()
{
phi[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, phi[i] = i - 1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) { phi[i * prime[j]] = phi[i] * prime[j]; break; }
else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
phi[i] = (phi[i - 1] + phi[i] * (long long)i % p * i % p) % p;
}
scanf("%d", &n);
int sum = 0;
for (int i = 1, j; i <= n; i = j + 1)
{
j = n / (n / i);
sum = (sum + (j - i + 1) * (long long)chuans(n / i) % p) % p;
}
sum = (sum + n) % p * (long long)inv2 % p;
printf("%d\n", sum);
return 0;
}
Min_25筛表示他需要重复计算根N次,就GG了
Min_25筛可以做,不过设S时候要用递推法,而不是递归计算,这里懒得写了
loj#6229. 这是一道简单的数学题 (??反演+杜教筛)的更多相关文章
- loj#6229 这是一道简单的数学题
\(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书 ...
- 【Luogu】P3768简单的数学题(杜教筛)
题目链接 emm标题全称应该叫“莫比乌斯反演求出可狄利克雷卷积的公式然后卷积之后搞杜教筛” 然后成功地困扰了我两天qwq 我们从最基本的题意开始,一步步往下推 首先题面给出的公式是$\sum\limi ...
- LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n< ...
- 「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\] ...
- 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛
题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...
- 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...
- luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)
题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \ ...
随机推荐
- webbrowser和js交互小结
一.实现WebBrowser内部跳转,阻止默认打开IE 1.引用封装好的WebBrowserLinkSelf.dll实现 public partial class MainWindow : Windo ...
- .Net 之Tuple 类
Tuple是什么 按照Msdn 上说:提供用于创造元组对象的静态方法.从字面意思并不能理解他的作用: Tuple 是个静态类,提供8个静态泛型方法:T 可以是值类型,也可是引用类型: 使用场景 ...
- js生成邀请码(1)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...
- python中引号中有双引号
#/usr/bin/python import os name = "ABC" #ABC是具体的模块名,产品经理每一次给的模块名字都不一样 os.environ['name'] = ...
- python 面向对象之反射及内置方法
面向对象之反射及内置方法 一.静态方法(staticmethod)和类方法(classmethod) 类方法:有个默认参数cls,并且可以直接用类名去调用,可以与类属性交互(也就是可以使用类属性) 静 ...
- 如何实现1080P延迟低于500ms的实时超清直播传输技术<转>
转载地址:http://www.yunweipai.com/archives/9037.html 最近由于公司业务关系,需要一个在公网上能实时互动超清视频的架构和技术方案.众所周知,视频直播用 CDN ...
- DAY10-MYSQL数据类型
一 介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 详细参考: http://www.runoob.com/mysql/mysql-data ...
- Elasticsearch之curl创建索引
前提,是 Elasticsearch之curl创建索引库 [hadoop@djt002 elasticsearch-2.4.3]$ curl -XPUT 'http://192.168.80.200: ...
- SpringBoot05 数据操作01 -> JPA的基本使用、基本使用02
前提: 创建一个springboot项目 创建一个名为springboottest的MySQL数据库 1 jar包准备 jpa的jar包 mysql驱动的jar包 druid数据库连接池的jar包 l ...
- ROS Learning-025 (提高篇-003 A Mobile Base-01) 控制移动平台
ROS 提高篇 A Mobile Base-01 - 控制移动平台 - 基本知识 我使用的虚拟机软件:VMware Workstation 11 使用的Ubuntu系统:Ubuntu 14.04.4 ...