【opencv】图像细化
【原文:http://blog.csdn.net/qianchenglenger/article/details/19332011】
在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析。
图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization)
的一种操作运算。
所谓的细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的形状,直到得到图像的骨架。骨架,可以理解为图象的中轴。
好的细化算法一定要满足:
- 收敛性;
- 保证细化后细线的连通性;
- 保持原图的基本形状;
- 减少笔画相交处的畸变;
- 细化结果是原图像的中心线;
- 细化的快速性和迭代次数少;
这里,我们对"Zhang并行快速细化算法"进行了实现(注意,该算法为并行算法,而我们在实现过程中并没有并行化处理,所以,效率并没有达到最好)。
参考资料
细化算法
论文 A fast parallel algorithm for thinning digital patterns
[cpp] view plaincopy
- #include <opencv2/opencv.hpp>
- #include <iostream>
- #include <vector>
- #include <limits>
- using namespace cv;
- using namespace std;
- /**
- * @brief 对输入图像进行细化
- 位灰度图像格式,元素中只有0与1,1代表有元素,0代表为空白
- 与1,1代表有元素,0代表为空白
- * @param[in] maxIterations限制迭代次数,如果不进行限制,默认为-1,代表不限制迭代次数,直到获得最终结果
- */
- void thinImage(IplImage* src,IplImage* dst,int maxIterations = -1 )
- {
- CvSize size = cvGetSize(src);
- cvCopy(src,dst);//将src中的内容拷贝到dst中
- int count = 0; //记录迭代次数
- while (true)
- {
- count++;
- if(maxIterations!=-1 && count > maxIterations) //限制次数并且迭代次数到达
- break;
- //std::cout << count << ' ';输出迭代次数
- vector<pair<int,int> > mFlag; //用于标记需要删除的点
- //对点标记
- for (int i=0; i<size.height; ++i)
- {
- for (int j=0; j<size.width; ++j)
- {
- //如果满足四个条件,进行标记
- // p9 p2 p3
- // p8 p1 p4
- // p7 p6 p5
- int p1 = CV_IMAGE_ELEM(dst,uchar,i,j);
- int p2 = (i==0)?0:CV_IMAGE_ELEM(dst,uchar,i-1,j);
- int p3 = (i==0 || j==size.width-1)?0:CV_IMAGE_ELEM(dst,uchar,i-1,j+1);
- int p4 = (j==size.width-1)?0:CV_IMAGE_ELEM(dst,uchar,i,j+1);
- int p5 = (i==size.height-1 || j==size.width-1)?0:CV_IMAGE_ELEM(dst,uchar,i+1,j+1);
- int p6 = (i==size.height-1)?0:CV_IMAGE_ELEM(dst,uchar,i+1,j);
- int p7 = (i==size.height-1 || j==0)?0:CV_IMAGE_ELEM(dst,uchar,i+1,j-1);
- int p8 = (j==0)?0:CV_IMAGE_ELEM(dst,uchar,i,j-1);
- int p9 = (i==0 || j==0)?0:CV_IMAGE_ELEM(dst,uchar,i-1,j-1);
- if ((p2+p3+p4+p5+p6+p7+p8+p9)>=2 && (p2+p3+p4+p5+p6+p7+p8+p9)<=6)
- {
- int ap=0;
- if (p2==0 && p3==1) ++ap;
- if (p3==0 && p4==1) ++ap;
- if (p4==0 && p5==1) ++ap;
- if (p5==0 && p6==1) ++ap;
- if (p6==0 && p7==1) ++ap;
- if (p7==0 && p8==1) ++ap;
- if (p8==0 && p9==1) ++ap;
- if (p9==0 && p2==1) ++ap;
- if (ap==1)
- {
- if (p2*p4*p6==0)
- {
- if (p4*p6*p8==0)
- {
- //标记
- mFlag.push_back(make_pair(i,j));
- }
- }
- }
- }
- }
- }
- //将标记的点删除
- for (vector<pair<int,int> >::iterator i=mFlag.begin(); i!=mFlag.end(); ++i)
- {
- CV_IMAGE_ELEM(dst,uchar,i->first,i->second) = 0;
- }
- //直到没有点满足,算法结束
- if (mFlag.size()==0)
- {
- break;
- }
- else
- {
- mFlag.clear();//将mFlag清空
- }
- //对点标记
- for (int i=0; i<size.height; ++i)
- {
- for (int j=0; j<size.width; ++j)
- {
- //如果满足四个条件,进行标记
- // p9 p2 p3
- // p8 p1 p4
- // p7 p6 p5
- int p1 = CV_IMAGE_ELEM(dst,uchar,i,j);
- if(p1!=1) continue;
- int p2 = (i==0)?0:CV_IMAGE_ELEM(dst,uchar,i-1,j);
- int p3 = (i==0 || j==size.width-1)?0:CV_IMAGE_ELEM(dst,uchar,i-1,j+1);
- int p4 = (j==size.width-1)?0:CV_IMAGE_ELEM(dst,uchar,i,j+1);
- int p5 = (i==size.height-1 || j==size.width-1)?0:CV_IMAGE_ELEM(dst,uchar,i+1,j+1);
- int p6 = (i==size.height-1)?0:CV_IMAGE_ELEM(dst,uchar,i+1,j);
- int p7 = (i==size.height-1 || j==0)?0:CV_IMAGE_ELEM(dst,uchar,i+1,j-1);
- int p8 = (j==0)?0:CV_IMAGE_ELEM(dst,uchar,i,j-1);
- int p9 = (i==0 || j==0)?0:CV_IMAGE_ELEM(dst,uchar,i-1,j-1);
- if ((p2+p3+p4+p5+p6+p7+p8+p9)>=2 && (p2+p3+p4+p5+p6+p7+p8+p9)<=6)
- {
- int ap=0;
- if (p2==0 && p3==1) ++ap;
- if (p3==0 && p4==1) ++ap;
- if (p4==0 && p5==1) ++ap;
- if (p5==0 && p6==1) ++ap;
- if (p6==0 && p7==1) ++ap;
- if (p7==0 && p8==1) ++ap;
- if (p8==0 && p9==1) ++ap;
- if (p9==0 && p2==1) ++ap;
- if (ap==1)
- {
- if (p2*p4*p8==0)
- {
- if (p2*p6*p8==0)
- {
- //标记
- mFlag.push_back(make_pair(i,j));
- }
- }
- }
- }
- }
- }
- //删除
- for (vector<pair<int,int> >::iterator i=mFlag.begin(); i!=mFlag.end(); ++i)
- {
- CV_IMAGE_ELEM(dst,uchar,i->first,i->second) = 0;
- }
- //直到没有点满足,算法结束
- if (mFlag.size()==0)
- {
- break;
- }
- else
- {
- mFlag.clear();//将mFlag清空
- }
- }
- }
- int main(int argc, char*argv[])
- {
- //获取图像
- if (argc!=2)
- {
- cout << "参数个数错误!"<<endl;
- return -1;
- }
- IplImage *pSrc = cvLoadImage(argv[1],CV_LOAD_IMAGE_GRAYSCALE);
- if (!pSrc)
- {
- cout << "读取文件失败!" << endl;
- return -1;
- }
- IplImage *pTemp = cvCreateImage(cvGetSize(pSrc),pSrc->depth,pSrc->nChannels);
- IplImage *pDst = cvCreateImage(cvGetSize(pSrc),pSrc->depth,pSrc->nChannels);
- //将原图像转换为二值图像
- cvThreshold(pSrc,pTemp,128,1,CV_THRESH_BINARY);
- //图像细化
- thinImage(pTemp,pDst);
- for (int i=0; i<pDst->height; ++i)
- {
- for (int j=0; j<pDst->width; ++j)
- {
- if(CV_IMAGE_ELEM(pDst,uchar,i,j)==1)
- CV_IMAGE_ELEM(pDst,uchar,i,j)= 255;
- }
- }
- namedWindow("src",CV_WINDOW_AUTOSIZE);
- namedWindow("dst",CV_WINDOW_AUTOSIZE);
- cvShowImage("src",pSrc);
- cvShowImage("dst",pDst);
- waitKey(0);
- }
运行效果
1原图像
2.运行效果
【opencv】图像细化的更多相关文章
- OpenCV图像细化的一个例子
转自:http://blog.csdn.net/zfdxx369/article/details/9091953?utm_source=tuicool 本文是zhang的一篇经典图像细化论文,效果很好 ...
- opencv 图像细化
图像细化多用于机器人视觉,OCR字符识别等领域,细化后的图像经过去毛刺就成为了我们常说的图像的骨架. 该图像细化代码依据论文: T. Y. ZHANG and C. Y. SUEN A Fast P ...
- SSE图像算法优化系列三十二:Zhang\Guo图像细化算法的C语言以及SIMD指令优化
二值图像的细化算法也有很多种,比较有名的比如Hilditch细化.Rosenfeld细化.基于索引表的细化.还有Opencv自带的THINNING_ZHANGSUEN.THINNING_GUOHALL ...
- OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...
- 【OpenCV新手教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26157633 作者:毛星云(浅墨) ...
- Opencv 图像叠加 添加水印
Opencv 图像叠加 添加水印 C++: void Mat::copyTo(OutputArray m) const C++: void Mat::copyTo(OutputArray m, Inp ...
- opencv图像读取-imread
前言 图像的读取和保存一定要注意imread函数的各个参数及其意义,尽量不要使用默认参数,否则就像数据格式出现错误(here)一样,很难查找错误原因的: re: 1.opencv图像的读取与保存; 完
- 学习 opencv---(12)OpenCV 图像金字塔:高斯金字塔,拉普拉斯金字塔与图片尺寸缩放
在这篇文章里,我们一起学习下 图像金字塔 的一些基本概念,如何使用OpenCV函数pyrUp和pyrDown 对图像进行向上和向下采样,以及了解专门用于缩放图像尺寸的resize函数的用法.此博文一共 ...
- [OpenCV Qt教程] 在Qt图形界面中显示OpenCV图像的OpenGL Widget(第二部分)
本文译自:http://www.robot-home.it/blog/en/software/tutorial-opencv-qt-opengl-widget-per-visualizzare-imm ...
随机推荐
- Xcode6中autolayout和sizeclass的使用
一.关于自动布局(Autolayout) 在Xcode中,自动布局看似是一个很复杂的系统,在真正使用它之前,我也是这么认为的,不过事实并非如此. 我们知道,一款iOS应用,其主要UI组件是由一个个相对 ...
- 分析Hibernate的事务处理机制
Hibernate是对JDBC的轻量级对象封装,Hibernate本身是不具备Transaction处理功能的,Hibernate的 Transaction实际上是底层的JDBC Transactio ...
- asp.net中@ Import 命令的使用
@ Import 将命名空间显式导入到 ASP.NET 应用程序文件(如网页.用户控件.母版页或 Global.asax 文件)中,同时使导入的命名空间的所有类和接口可用于文件.导入的命名空间可以是 ...
- PAT-乙级-1020. 月饼 (25)
1020. 月饼 (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 月饼是中国人在中秋佳节时吃的一种传统食 ...
- DevSecOps 实施篇!系列(二)
想在自己公司建立 DevSecOps 计划?没问题,企业规模无论大小,都可轻松实现.这里有5个基本的 DevSecOps 原则可以帮助你启动.当然,如果你对 DevSecOps 还不太熟悉,不妨先看看 ...
- 【C++基础】sizeof 数组 指针 空NULL
笔试遇到很多sizeof的小题,博主基础堪忧,怒总结如下,还是要巩固基础啊啊啊! sizeof操作符 对象所占 栈内存空间的大小,单位是字节 关键词:char 数组 指针 结构体 class [注意 ...
- python读写配置文件
#coding:utf-8 import ConfigParser class Conf(): def __init__(self,name): self.name = name self.cp = ...
- 2013流行Python项目汇总
2013流行Python项目汇总 转自:http://www.kankanews.com/ICkengine/archives/102963.shtml Python作为程序员的宠儿,越来越得到人们的 ...
- A JSTL primer, Part 2: Getting down to the core
In the initial article of this series, you got your first look at JSTL. We described the use of its ...
- android应用崩溃的调试方法(c++ lib so文件库崩溃)
android调试工具addr2line使用: 1.将ndk中的arm-linux-androideabi-addr2line可执行文件的路径加入配置文件~/.bashrc中,例如: export P ...