题意:一个无向图联通中,求包含每条边的最小生成树的值(无自环,无重边)

分析:求出这个图的最小生成树,用最小生成树上的边建图

对于每条边,不外乎两种情况

1:该边就是最小生成树上的边,那么答案显然

2:该边不在最小生成树上,那么进行路径查询,假设加入这条边,那么形成一个环,删去这个环上除该边外的最大权值边,形成一棵树

树的权值即为答案。(并不需要真正加入这条边)

注:其实用树链剖分和LCA都可以,选择自己熟悉的写就行,我写的树链剖分

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn=;
int n,m;
LL mst;
struct Edge
{
int w,v,next;
} edge[maxn<<];
struct E
{
int u,v,w,id,mark;
void init(int a,int b,int c,int d)
{
u=a,v=b,w=c,id=d,mark=;
}
} o[maxn];
bool cmp1(E a,E b)
{
return a.id<b.id;
}
bool cmp2(E a,E b)
{
return a.w<b.w;
}
int head[maxn],p;
void addedge(int u,int v,int w)
{
edge[p].v=v;
edge[p].w=w;
edge[p].next=head[u];
head[u]=p++;
}
int fa[maxn],sz[maxn],id[maxn],dep[maxn],top[maxn],son[maxn],clk;
int ww[maxn],re[maxn];
void dfs1(int u,int f,int d)
{
fa[u]=f;
sz[u]=;
son[u]=-;
dep[u]=d;
for(int i=head[u]; ~i; i=edge[i].next)
{
int v=edge[i].v;
if(v==f)continue;
dfs1(v,u,d+);
sz[u]+=sz[v];
if(son[u]==-||sz[v]>sz[son[u]])
son[u]=v,re[u]=edge[i].w;
}
}
void dfs2(int u,int tp,int cc)
{
id[u]=++clk;
top[u]=tp;
ww[id[u]]=cc;
if(son[u]!=-)dfs2(son[u],tp,re[u]);
for(int i=head[u]; ~i; i=edge[i].next)
{
int v=edge[i].v;
if(v==son[u]||v==fa[u])continue;
dfs2(v,v,edge[i].w);
}
}
int maxw[maxn<<];
void pushup(int rt)
{
maxw[rt]=max(maxw[rt*],maxw[rt*+]);
}
void build(int rt,int l,int r)
{
if(l==r)
{
maxw[rt]=ww[l];
return;
}
int m=(l+r)>>;
build(rt*,l,m);
build(rt*+,m+,r);
pushup(rt);
}
int query(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
return maxw[rt];
int m=(l+r)>>;
int ans=-;
if(x<=m)ans=max(ans,query(rt*,l,m,x,y));
if(y>m)ans=max(ans,query(rt*+,m+,r,x,y));
return ans;
}
int getans(int u,int v)
{
int ans=-;
while(top[u]!=top[v])
{
if(dep[top[u]]<dep[top[v]])swap(u,v);
ans=max(ans,query(,,n,id[top[u]],id[u]));
u=fa[top[u]];
}
if(dep[u]>dep[v])swap(u,v);
ans=max(ans,query(,,n,id[son[u]],id[v]));
return ans;
}
int fat[maxn];
int find(int x)
{
if(x==fat[x])return x;
return fat[x]=find(fat[x]);
}
void init()
{
for(int i=; i<=n; ++i)
fat[i]=i;
mst=p=clk=;
memset(head,-,sizeof(head));
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=; i<m; ++i)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
o[i].init(u,v,w,i);
}
sort(o,o+m,cmp2);
int cnt=;
for(int i=; i<m; ++i)
{
int fx=find(o[i].u);
int fy=find(o[i].v);
if(fy==fx)continue;
addedge(o[i].u,o[i].v,o[i].w);
addedge(o[i].v,o[i].u,o[i].w);
cnt++;
o[i].mark=;
fat[fy]=fx;
mst+=o[i].w;
if(cnt>=n-)break;
}
dfs1(,-,);
dfs2(,,);
build(,,n);
sort(o,o+m,cmp1);
for(int i=; i<m; ++i)
{
if(o[i].mark)printf("%I64d\n",mst);
else
{
int tt=getans(o[i].u,o[i].v);
printf("%I64d\n",mst-tt+o[i].w);
}
}
}
return ;
}

Educational Codeforces Round 3 E (609E) Minimum spanning tree for each edge的更多相关文章

  1. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  2. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  3. codeforces 609E. Minimum spanning tree for each edge 树链剖分

    题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...

  4. cf 609E.Minimum spanning tree for each edge

    最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...

  5. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  6. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  7. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  8. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

随机推荐

  1. dnf的动画脚本研究

    . 1.0x00    : 帧数           int16 2.0x02    : 总为1(?) int16 3.0x04  : 资源文件名长度 int32 4.长度+1 :   0,1(未知用 ...

  2. MBProgressHUD ---

    1,MBProgressHUD常用属性和用法Demo - (void)testMBProgressHUD { NSLog(@"test MBProgressHUD "); /* 要 ...

  3. IOS, xib和storyboard的混用--参考

    1. 从xib的viewcontroll中启动storyboard 或者 从一个storyboard切换到另一个storyboard: [objc]– (IBAction)openStoryboard ...

  4. swift基础--运算符

    (1)加减乘除 (2)三目运算,切记后面的空格如果不加会报错的.估计是苹果的bug. (3)聚合运算符,省却了一个判断,很人性化 (4)区间运算符 //加减乘除等等 let a = 2 let b = ...

  5. iOS工程中的info.plist文件

    我们建立一个工程后,会在Supporting files下面看到一个"工程名-Info.plist"的文件,这个是对工程做一些运行期配置的文件,很重要,不能删除. 如果你在网上下载 ...

  6. unity3d引擎程序员养成

    标准流程:1. c++ Primer 英文版(第四或第五版)全部看完习题做完是必须的.渲染程序设计比较复杂,后期会用到c++的全部特性.c++学的越好后面越轻松.要看英文版,计算机翻来覆去就那么几个单 ...

  7. springMVC数据封装成POJO

    springMVC把前台的数据封装为POJO与struts2的封装形式不同.struts2需要在控制器声明需封装的POJO,而springMVC不需要任何准备工作,只需在相应的方法的参数中加上需封装的 ...

  8. C#学习笔记(三)

    1.我们在Main()函数中,调用Test()函数,我们管Main()函数称之为调用者,管Test()函数称之为被调用者.如果被调用者想要得到调用者的值:1).传递参数.2).使用静态字段来模拟全局变 ...

  9. DeepID人脸识别算法之三代(转)

    DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,目前最强人脸识别算法,已经三 ...

  10. linux查找某个文件中单词出现的次数

    文件名称:list 查找单词名称:test 操作命令: (1)more list | grep -o test | wc -l (2)cat list | grep -o test | wc -l ( ...