Knight Moves
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13222   Accepted: 7418

Description

A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.

Your job is to write a program that takes two squares a and b as
input and then determines the number of knight moves on a shortest route
from a to b.

Input

The
input will contain one or more test cases. Each test case consists of
one line containing two squares separated by one space. A square is a
string consisting of a letter (a-h) representing the column and a digit
(1-8) representing the row on the chessboard.

Output

For each test case, print one line saying "To get from xx to yy takes n knight moves.".

Sample Input

e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.

Source

 
 
 
解析:题意为求从棋盘a处到b处需要跳动的最少次数。广搜一遍即可,要注意骑士的行走方式。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXEAAAEiCAIAAACA/3WqAAAgAElEQVR4nO2dfXxT1f347+YGFQimtMNSEDPAWtFqoMJCYRIRNV9pR1lRoSpExVpc1crDqFO4K06qUgyCrIYHU3loQQstRSidSESBCr+MDEQ6GCPjMVAKgdISWmk/vz9OuQ1JmtzknntzUz/v1+cPSJOcnJvPeec83XsZQBAEoQcT6g+AIEiHAp2CIAhNfu5OaWlpmTNnL8MYx4zZfPXqtVB/HFnQ0tIye/aeDnBMWPb/MYyRYYx9+665csXZ1NT0008/hfpDBQP3dTQ0OFtaWkL9cfzws3YKl3MMY5w9u2Lv3r3//Oc/m5qa5P+1iUdx8X+4Y/LMM6V79uzZuXNnOB6T1NRK0g6XLLEwjHHVqqpdu3ZZLBan0xnqjxYArl/HnDlb9+zZs337dpl/HT9rpwDAmjWHGcbYrdvSTz/dOHXq1PT09D179jQ2Nob6c4WS778/+6tfGRnGOH9+6bRp01JTU/fu3Rtex4T7tSgt/eHFF0u7djUOHvzohg0bVq5cmZ6efv78+ebm5lB/Rr4UFR0hdTEYNhUUFAwcONBsNtfV1clWKz93p5Bfs549V5SUlD300EO9evV64403Ll26FOrPFUrIYJAck9GjR8fGxobXMdmz51ynTssYxtinz6odO3aVlZUNGjQoLS0tIyNjzJgx0dHRU6ZMuXjxYqg/Jl9Iit5++6fl5VteeeWVnj17jho1qqamJtSfq11k5xTyC9O375odO8506rQsMtJ07NhlkcqqqbnatesKhjGOH782Lc1Efg1mzjQ2NDSIVGJ7NDT8NHjwevIBRK1ye5DDHhlp+uGHC4MGlTCMcdiwVatWrendu3dkZKTRSOeYuPbkv/vOLvwN3XA9jCS6dVuanf1Ov3797rrrrvfee2/9+vUPPvjgQw89dO7cOSolutaob981Tifl+RouRYcNW1VaunHYsEcZZlHnzkv+9a+TdAuiiLycQpS8Y8fpXbtOk5+avn3XXL7ccP36dTGK437QnnhiDZcZMTGmurqrYhTXHpxGr1xxXr7sHDSoJDl5S1OTKFX2Cjnsy5b9eOnS1Wee2UaOybRpJe+++25kZGRsbKzVahX4FZC28cYbu65caSTOGjNmc2OjKDOmpDq33bZi7dqvNm/ePGnSpN69e2s0miNHjjidzm+//Xb37t1UhnKkoMhI0+HDtZcuXSX1YhjjHXesrq+/RmVswqXo9OnrP/lk9S9+sZgUkZX1jUiNQjgycgppWmPGbP7Pf/777bf7IiKWMoxx0qTyvXv3Hjhw4PTp09RLJJ18hjH+8Y9F06dP//3v32cYo0KxbPPm75uamqgX5xVS6+TkLadP26urq0ePXs8wxt//vvjCBYc0A2bXw/7jjz9qtevIQfj0041PP/20QqEYNWrU2bNnhRRBGkZy8paLFy/9+9/HBg5cwzDGpKTV1dWHqR/n+vqmBx74nGGMw4ev2bZte2VlZX5+/pgxY3Jzcy9fvtzS0kJr9Yfrobz4YsXBgwctlgN33VVIJrZtNtvJkyfr6+uFf4Pk2+neffknn5THxy+Mjo675ZYlDGMcMaLIbN7hdMpxGUguTuF8vHr19zt27Bg79hly7GbM2LBhw4bBgwdv27aN7hFsaPiJ6+Rv3lyRm5v7+ONvkSyZNWvZggULrly5IvYXxtV67VrLnj175s+fHx09m2GMH3ywYerUqf/73//E/i1yPey7du1KTX0qMjKfTKasW7f+nnvuUSgUc+bMqaurC7oIrvdeXn5o375906YVkYP8wQcbXn/99ZKSkoaGBorH+fvvz5IajRu3Zvv27YWFhZMmTYqLi5s+ffqlS5coFkQ6Kd27L1+79quVK1fefXdCr14fM4xx6NDCtWs/X7Bgwbhx4/71r38J9Bc33/fmm18kJ0+Oj3+WHL3x49cuXbp06tSpFy5ckJtW5OIU4uNRo0q2bdv+9ttv9+s36pe/LODmumNiYu677z6yikarRC7XZ8zYsGLFit/+9rdK5WgyAjcaS4YPH15YWHj1qriDIJIxo0aVbN/+zezZs/v16/eXv/xl1apVa9euffTRR4cPH37s2DFRVyjIB4iN/ewf/9jOsmz//o/84hd/ZxhjWlpxQUFBVFRUdHR0eXm5kJEC+WYfe6ysqmrP8uUrO3XKJQ2vpGRDWlraHXfcUVZWdu0atV0wXPfhjTe+2Lp1a1ZWVlRUVNeuXdVq9Zo1ayguJHOtfePGzZMnT46P15FDp9GsNBg+uv/++++///6XX375yJEjQX+DNTVXu3RZzjDGRx4peuqpVTqdbtCg2aR2H35Y/u67795+++25ublXrlyhVSkqyMIpXPPOySkvLS0dMmTI7be/SL6w8vItr732mkKhiI+PP3bsGEUlkyW67t2XFxZuIkUoFBMZxvib3ywvKSkbPnz4I488QmsmzyuutS4uLu7fv//vf//70aNHf/3111qtNjIyslevXkVFReLtp+A+wMSJ68vKyoYMGRIVNZmkbH5+2dSpUxUKxcCBA0+cOBH0YeeKeOutzevWbSZ9z+HDDf/4xz/efvvtXr163XbbbQsXLqyvr6dVKW4yZdWqLZs2bXrkkUe6du36xz/+ccOGDadPn6bY7yMDZ41mZWnpxqSkpK5dnyaHbvr09e+8806PHj1GjRr1wQcfCFkv4/z40EOrjcYVkyZNiYh4h7SLsrIv9Xq9QqF48sknL1y4QKtSVJCFU7geuMGwaf78+b17303moshc98iRI7t06ZKenk732HErpl98UTp8+PCuXSNJtz8trXj9+vX9+/fv3bv3jz/+KF43gcsYg2HTvHnzBgwYoFKpCgoKLl++vGfPniFDhgwaNOif//yneMMf7gMsXPjl4sWLY2IGkMOuUCxbtmzD8OHDu3XrptfrhSy7ct8sCYVi1ksvvbxp0yaWZe+8887IyMjf/va3O3fupLW9lVv36dWrsKLiq5KSElJKQUHBpUuX6H6VZ8/Wd+my/De/Wb5u3fo+fUYwzBIySVRSsoHMQ40fP/7kyZNCfgW5XTYzZ5YWFhY+8MDwX/7yYyKy9etLhwwZ0q1bt9dff11uy/yycArpMigUy0ym8oyMjC5dniKHcsaMDUVFRb1791YqlZ988gnFJV5uMiUtrfizzz6LjY3t2nUk6bZ89tmXH3/8cY8ePXr37i2k4+oXrtaFhZteeeWV6Ojohx9+mGRhY2PjgQMHqqurKQ4KPCFOIYf95ZdfjogYTw77sGGrVq5cTQ67wFVk1/1aixcvzsrK0uv1ycnJDz/88EMPPTRgwIAlS5Zcvkxt4ZzrFo0YUbR16z8+/PDDqKio2NjYvXv3iqHmnTtPkc2BJP7yly/Xr1//4osv9ujRo2vXrtOnTxdSNc6PSUmrv/xyS1ZWVpcuD3HtorCwsGfPnlFRUaL2ZINDFk7h1l8++GDDkCFTf/WrOeSr+vDD8scfz4+MHNCnTx/hy5mucL+fCxZszMnJUSp7knF+Tk75hg0bxowZ06VLl6SkJFHHPmQLL8MY588vfe6553r06DFt2rT//vfcnDn/r6Wl5fr162Lv9XQ97A8+mHnrrVmdOn1CVpHT0vKUygeFH3bOKfn5ZZmZmbGxscOGDZs5c8ngwXPHjRu3evXqixcvUhzPcj2vP/+5bMuWLc8//7xCoXj44YcFrlt5Qhr8mDGbjxw5+v777z/99NMvvPBCfn7+vffe26tXr1tvvfWee+75+uuvhUz/cSmalla8atWquLi4W27JIr8Bn3xS/rvfvXf77b3uuuuuo0ePym1PsCycwrUuhjF267b4nnte5P47YsSfH3jggf/7v/+jmxakRIVi2YoVZSkpKb/+9WsMY3zuuY1bt26dMWNGdHR0t27dMjMzHQ4HxULdOHeugczA9ey54p138gYMGJCT80n//mvOn3dIsOQENx/2rl0XuR72gQPnDB06dMyYMQIPOxkgkIaRk5PTu3fvRx6Zdf/9n2zbtv3o0aN0V3zAZbCwcOGXGzduTEpKUigUAvsLXnHd6sYwxt/97o3Bgwfn5OTk5eXdc889w4YNKy8vFzhJxBWxYMHGt99+m/vZI8sI48ZNeeKJJ6hPCFBBFk6pr2+6//51pHWtXVvy9NPzybHLzv585syZOp1u7NixNTU1FH383Xenb721bZx/yy0fzZ//6c6dO996662+ffsqFIr77rvPYrGIvZR78qSDbMMhkZi44scfq0+dOvXBBx98//33jY2NopqlpaXliSc2kcHOunVfZGTMu+WWT8gq7MyZM1NSUh5//HGBh72lpeXTTw+4Nr8//GFldXX1oUOHXnvtte3bt9OtI5mg7dWrcPPmyqKiotjY2B49eogxOuAGWa7x5JPrvvnmm3379tnt9mvXhO55Gzt2K2kRn3++ISUlpVu3br/5zRwilBUryt58880RI0Y88cQT58+fx7Vk71y7dm3Tpk1FRUVvvfVWXFzcq6++unbt2iVLljz99NNRUVFz585dv349xf0FLS0tdXV1s2fPLigoyMjImDlz5ldffTVr1qw777xzwIABffv2/eijjyRYomtubt6/f//ChQvXrVu3dOnS6dOnz5w5U6vVLlmy5Isvvti/f7/YW++amppKS0tXr1791ltv9e/ff8qUKcXFxUaj8ZlnnomOjv7b3/5WVlZGtooFXcT169fNZnNhYeHnn39eUFCQm5s7Y8aMwYMHFxUVLV26dO/evbTqyE1ATJhQUllZybIsmQOurq6mPjpITa3s23fNxo3b+vf/1FUrc+cWHT9+nMpPUXNz87lz58hXc+eddyoUir/+9a8nT55cvnz5jBkzhg4detttty1dunT16tUUV82oIBentLS0nDx5MikpSalUdu7cOSEh4fnnn+/Xr99tt92mUCgmTpy4YcMGurtFWlpaDh06pNVqe/To0adPn+Tk5ClTpjz11FNqtXrhwoW1tbXS6P+nn35au3Ztv379evToERkZeffdd0+dOjUzM3Pr1q1UNmL6paamZty4cT169CCH/ZVXXrn77ruVSmX37t3/9Kc/7dy5U/g29mvXrv31r38lvYbo6OgRI0ZkZ2dnZmZ+8cUXAoV1c0Va+w4ffbS5rKxs9OjRXbt2HTt27Pnz56m8P4HM7kdGmnbt+vcPP/wwZ86crKys559fQpzy2mtrMzMzrVYrlZWs5ubmZcuWpaSkdO/evU+fPl9//fW1a9fWr18/cODA7t27R0dHv/jii4cOHZLbJn25OAUArl+/fvTo0cmTJz/66KOLFy8+efJkeXn5E088MWXKlI0bN1JMPtcSDx48+P7770+aNOnPf/7znDlz5s6du337drobLv1y9erVbdu26fX64cOHT548uaCgwGq1Up9raI/m5uaTJ09mZ2enpKQYjcbTp09//fXXycnJL7300qZNm2jN7Fy+fPnvf//72LFj77333meffXbRokUHDx6kIk3SyO+4Y/U335zu1GnZ6NEbKioq58+f37NnT6VSuWDBAro/48Rc3bsvX7Nm67PPPjthwoSnnnrqzjvv6tYtj0xFz5w5c/jw4UeOHKHS1K9cubJgwYLx48dnZmYSOTY2Nm7btu2FF17429/+9sMPP0h2Egl/ZOQUALh+/frFixfPnz/f0NDQ3NzsdDpra2sdDofw0amPEq9cuXLx4sWLFy86HI66urqQfEmNjY0XL16sqam5ePFifX29xJcja25uvnTpUm1tLRHZtWvXqB/2lpaWhoaG2tras2fPXrhw4cqVK7R+Xcn6SGzsZ6++alYqP928+fuioiKNRtOtW7cBAwbQXS4k/OEPFWTya/Tox1566aWMjIxXX/2MYYz33ff3VavWkMspmEwmKt1qMki/cOGCw+EgIziy1cDhcFA8hnSRl1MQJFCuXGkkE/y33lrw8cfF33777ahRo3r27BkdHT1z5kwxVu6am5vz8r5ym6DNz9+9Z88esjlFqVR+/PHH0l8xQyagU5Cwp6mp6aOPPho/fvzjjz+ekJAwevTo/v37jxw5Urwti42NjYsXL05JSZkwYcKnn3761Vdfbdmy5Zlnnhk5cuQDDzyQmJgowaKhbEGnIB2B+vr6uXPnxsXFvfDCC88999yzzz5rsVhEHULW1dUtXbpUo9EkJyfPmzfvo48+KiwszM3NffLJJ8vKyn62nRRApyAdg5aWlosXL5aXl69cuXLXrl01NTViz0mRGaLTp09/++23lZWVy5Yt++abb6qqqs6ePSve9F9YgE5BOghkdvnq1atSzrKTizw5nc4rV65cu3ZN5le0lwZ0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0EdEpDgfMng1ms6Qxa5bUJZrNUFkZgppyYTBAcbFEZW3aBO+8I13VZs+GykqJylq2DJYtk6gsiRPGYIC9e8Vr6O6I6JTCQoiIAK1W0mAYqUvUakGjCUFNuYiJgfh4icpSq0GplK5qERGg0UhUlkoFKpVEZUmcMDExMH68eA3dHRGdYrOBSiXe23uHCcVgLiQ15dDrwWSSqCyzGbRaicoCAJUKbDaJymJZYFmJypI4YaTMEECnUAGdIhLoFCqgUwSBThEVdAoV0ClBgk6RBnQKFdAptECnUACdIhLoFCqgUwSBThEVdAoV0ClBgk6RBnQKFdAptECnUACdIhLoFCrI3SnHt0BiBhTa/T8TnSIN6BQqoFNoEUATZDMg8UagU1xBp4gEOoUKsnSKHdJdhIJOcQOdIhLoFCrI0ik3YNEp3kCniAQ6hQroFEGgU0QFnUIFdEob6BSvoFNEAp1CBXSKINApooJOoQI6pQ10ilfQKSKBTqECOkUQ6BRRQadQAZ3SBjrFK+gUkUCnUAGdIgh0iqigU6iATmkDneIVdIpIoFOogE4RBDpFVNApVECn3MBlhz5r9f90dIo0oFOogE6hBb8maL3pZJ9EfmZBp0gDOoUK6BRa4PVTKIBOEQl0ChXQKYJAp4gKOoUK6JQg2bsX70MoReB9CKlEx74PYW6ueA3dHRGd8t13wDAYGBihj1mzxGvo7og79omNBYtF0mAYqUu0WKC8PAQ15SIlBVhWorKMRkhMlK5qsbFQXi5RWRkZkJEhUVkSJ0xKSkcZ+6BTJMsYdIrwQKfQAp0SfinimTHoFOGBTqEFOiX8UsQzY9ApwgOdQgt0SviliGfGoFOEBzqFFuiU8EsRz4xBpwgPdAot0CnhlyKeGYNOER7oFFqgU8IvRTwzBp0iPNAptAjAKYW5Ad8zDJ0iTcagU4QHOoUWfJ3CBnhSMqBTJMwYdIrwQKfQgpdTdqzwfq2DHT5fhU6RLGPQKcIDnUILXk5hXQY7/EdA6JTgYt9u52GjudpUxT9j5OyUEzMX8a+LW6BTqIT8nGK92R0uV3tDp9BKkQPltjMZ7NH8UosFjiyqqEvU1idozmSwPDNGtk6xsaam6F6np84Nrjh0CpWQn1M8aJ1byYXjPp+GTuEftSn6y0m6xliV64NnMtjmThE21mQ1O3xnjAydcrCk2qFNva5QXusz4FCRdX+l/bDR7LsinoFOoRJh4xSco6WVIvt2O5uiYg4VWd2cQv7k0KbWJ2h8tEa5OWXfbmdtiv66QmljTWcyWBtrsljg+JsFTlV8TVpmQMWhU6iE7J1i5dVJAXQK76hN0dtY04FyW1NUjFd31KboD5ZU+8gY+TiFSNDGmqpNVTbWVJui5/502GhujFUdNpr5F4dOoRJydwpZA/K94kNAp/CJQ0XWhjj1/ko7aY11idpABwjycQqpwpFFFRYLWM2Ohjj1qaw81ycQrfAvDp1CJeTtFCvfDW+ATuEX1xXK/ZV27r9H80sd2tRAM0YOTqk2VTlV8XWJWvLfw0ZzQ5x6326n63OIaA6U23gWh06hErJ2CstbKIBO4RHH5hU3d4pwfcRqdjhV8a6W4ZMxoXIKmXk9l55NFqpcB2g1aZmXk3Se7xCQNNEpVEK+TinMdRdK4QpfsyroFN9hNTvqEzRkpOAaRxZVeG2NPjImVE5piFPXJ2hOTDN4zpI0xqoOFVm9vklTVAxPaaJTqIRMneJ9K+0KXy9Bp/iO2hS9p1BInMlg3X72fWeM9E7Zt9t5OUnnOgXrFmSSyOufDhvNdn0On+LQKVRCjk45viXI+xCiU3yE21yDW5DVE54ZE5J+SnvdEIsFTkwz+LaG77pzgU6hErJzSntCwX20oqYIWWDmmTFymKN1Dbs+x23FJ7hAp1AJ2TklaNApQqI2RX/hsQk8M0ZWTrGxJv4zJr4DnUIl0CmCosM4ZX+lHRiGZ8bIyil1idpj84qpFIdOoRIdxynFxdCpEyQmShoMI3WJiYmQkACdO9N/213ddbu66x673+77aVFRoFJJVNO4OFAofD1h2CDn6U4qv5+ZZ3TuDAkJElUtNhZiYyUqS6SEaS+iomDiRPEaujsiOmX/foiJAbNZ0mAYqUs0m6G4WJSa7qh0Xhiq+3F2se+n6XQwa5ZENTUYQK329YTj6TnH03NoFRcTA8XFElVt8mSYPFmiskRKmPZCp4P588Vr6O6IO/aR8ub1BEbECrWLiDW1WkGt9v0UvV66nq3ZDFpt+3+uqvL7aQNCpQKbjeL7+YJlgWUlKkvipiFlhgA6hQri1tRkAr3ex99l5JQJE6C4mGJx6BQqoFME0QGdAgDZ2WAwtPdHGTlFqwWzmWJx6BQqoFME0TGdYreDRtNe85KLUxwOUKvpOgCdQgV0iiA6plMAwGCA7Gyvf5GLU3x2poIDnUIFdIogOqxTAECng4oKz4dl4ZSKCkhNBaeTbnHoFCqgUwTRkZ1itYJG49luZeEUjQaqqqgXh06hgnydctOpySv8Pz8snZKdDVqtl/DWQeCQrqbeugOhd4po9UenUEGmTvG8DyGf6+aHmVPs9nb3zOl0wDDtfTOS1tRj2iL0TsnLg5wcMYpDp1BBjk5xvRqT62nKfs9LDien6PWgVrc3D+obSWtqt0N8PDgc3AOhd4o4Ax9Ap1BCjk45frM72I7nFLMZGAbsvK+LeTNS17S42HUEFHqniNb0231jpxPy8kClAobxFYFslkGn0CLwJnjjPoTpW/w8MWycQuZQBBz1ENSUtCirFULuFKcTYmKC1rFvvDuluhr0esjO9iOy0aNhwQL+ZaFTaBFgE7whFD5Xug4bpwj+mQ1JTVsHQXZ7iJ2SmQl5eSIV5+WbKS4GtZpXhdPTAzou6BRaBLvuw2PpB50iOgUFkJkZYqeI1kkBr9+MRuO/uIICqKric/qlK+gUWgTcBF0XgHwPf8LGKampUFra9t/S0pv+y4OQOQUAsrPL1GzInFJVBRqNeMUFY3uTqW3OOJBsQKfQIpgpzbYOi8/l5LBxitMJKlXbr5/ZDKmpbfN8en3rcnL7hNIpAJUDs/dMpLwpvj3cnVJRATqdeMUF5hQyzxIR0baZCJ0CAGHhFAAozG3Vio+bnIaNU8DnUTeZWre9tX/BgdA6Ra+Hq7fFQHW1BGW5OyUz0/duQIHwdQrpm8THu3+J6BQACBentO5S6Rj9FACw2UCr9ZO/riuXN3f4Q+6UillmiI+ne+0Sr9zkFJMpuO08/PHvlAkTWvuSXjfIoFMAQI5OsXqZkSVO6SDzKYTiYpgwge+TU1NBo2ntv+h0J7+zhdYpJhOAw+H3HALhtDnF6QSNhixmi4cvp1RUgFYLqam+Xo9OAQAZOsV1uad1pHNjRdnHwAfCzikQyLF3ONq27VdU/NRHVdkltTUruZDqa2z71NXVoNG4brGlTptT2r/2AkW8OyU7GxgGdDowm/2cCY1OAQAZOqW9e4b53aISfk4BALU6iJ96mw0yepa6OyUmpq0vo9VCdrZIa643ZYw41xzgaHMK7Uu6eaXNKTYb6PWg1bbOm/AE96cAgAydAh5a8buDlhCWTjGb+W6pcsF7TW22m85CNBh8XKtNCO4ZI6ZWWp0iwiXdvNLqFLLTxGRqPZLilItOoQVeP8UDpzPQrgrfmtpsbT0X0kJonHrnJWMyM6GgQPg7e2I2Q/IIB2i1Ys+kEDJ6ll4dqQOtVtQBHQGdQgt0CgUCqKnd3vpjy/Xk9XpgWSFtxkvGOMRq9t9tcliV4gvFZAKWBbW6skvq2cIKCYQC6BR6oFMoIKimJhPk5EBEBOh0UFDgd3+dJ94zRgytOBwOtXbKg2IKxW4HlQpSU4FlwWrFax1QoeM4Zf58P2eiY7iGjqkoYDLNjNbMaE2MXvgbxjPVVkYdwThpfcIqRqNhqkQ9CBWMTsdUhPy76Hgxdqx4Dd0dcfspeA/24MLGmrh0qE3RW80O33fYbu8e7CemGc6lZ1P5SMfmFV94bAKfe7AHEVazozZFDwxz/M0C18fxHuxUouPcgx2dQiVsrKkhTl2XqK1L1J7KyvOaMe05xWKBMxnsmQxW4Gc4WFLdEKfet9tJ1ykHym21Kfq6RG1jrMrGmjyfgE6hEugUQdHxnGKxwIFy22Gj+bDRbNfn1KboT2XlufZcfDvFYoEzGaxdnyPkA9QnaKpNVRYL0HKKjTXZ9TlOVbyNNR02mtvriKFTqAQ6RVB0SKe4Btcajyyq4DLGt1MsFjiVlefQpvoeQ7UXtSl6rhNBxSk21tQUFXMqK2/fbqfvZ6JTqAQ6RVB0eKeQ2F9pv5ykA4a5rlBuu0Nf8bjB70uO5pfWJ2gOllQHVJCrUCwCnLJvt9OuzyEzRA5tKs+PgU6hEugUQfEzcQoXVrNjodpUpcluiFP77YkcLKmuT9AczS/l+eY1aZluk6ZBOGXfbufR/NLGWFVNWuahImtAr0WnUAl0iqD4uTnFcmPsc6jISpruufTsMxms1ylPiwWsZiMgLWAAABR0SURBVIdDm8pn1vZUVl5DnNrtwSCcUpuir0/Q7K+0B1E1dAqVCA+nFObyumcYOkWajOHmU6xmx4lphjMZbG2K3q7POVBu8/qSMxmsQ5vqYzrjXHp2bYre8+X8nXI0v/S6QklGOsHN41jQKZQiDJzC54JMgE6RMGO8ztGeyWCbomLOZLBe+whH80t9aKUuUXvYaPZ83K9TDhvNRFiXk3TtGY1/oFOohOydcuPiKeiUUKWIZ8a0t+5jY01nMtjGWNWprDzPadEjiyq8auXIoorLSTqvb+jpFCIRpyqezL/WJWrPZLD8p2x8BzqFSsjdKdyVaNEpoUoRz4zxvZZM1lycqviatEy3P5HeituDDXHq9iZTXZ1CZnyJRAJdTuIZ6BQqIWunHN8C6eiUUKeIZ8b43Z9CoiYt03MnrttqsVfLcGEyONb0zG7uFAEM41TFk41w4gU6hUrI2Cl2SM+F41Z0SohTxDNjeDrFanaQPf6ucyXkQdIxOVBuq0vUep0HOWw016Rl1kWpFtxh8LtXjVagU6iEfJ1SmAuF9huXvEanhC5FPDOGp1NIHDaa6xK1wDDcWTZWs6M+QWN/4S03oZA+CzdRcvzNApPBIcY5hO0FOoVKyNQpx7fcuGQkOiXUKeKZMQE5hQtyCl9DnNpqduzb7XQ89IfLQx751zcOiwVOZeU5VfEObarbbKtI5yW3F+gUKiFLp5BRD/k3OiXUKeKZMcE5hcShIuuZKbMb7h5k1+e0/OrXDfcNJXtbvE67olOoBDrlxqiHgE4JdYp4ZkxATjlYUk3Ocubi2Lxi5513/9S9BzCMjz24FnQKpfjZO8Xq/V4cfu/IgU6RLGP4O+VQkdWpiiczta7REJ/YcsuvgGFqkyf/WLyfz1qyBIFOoRLoFEGBTnELq9lx/M0Cbk8amT3xfNrxNwvq7x0KDNPU4/b/vvf5dYUyuH20dAOdQiXk5xQ3cOwT6hTxzBivTqk2VV14bEJTVExNWqbfPWl1iVpy8QSy4Y0sMJMzEl3lgk6hEuiUm0GnhDpFPDPG1Slcx6Q+QXNsXjGfvSSHiqwNcer9lXZyRVhuu+2BctuJaYa6RG1zpwiyX7Zyaik6RXigU24GnRLqFPHMGOIUq9lBzu7h0zHhwnXPGzDM/kp7U1SM23P27XaS83ps6tTaX8f4OOOZbqBTqITsncIbdIo0MUHnMI9kz6VnN8aqzmSwAV1YwFUoFgvUpugtFvDclsKF0QiP3W8/lZXXGKsiu+BErRo6hUqgUwTFz80pVrPjQJTWPJI9Mc0Q6GVK3ITChY8d+q7zKWS3fkOcWryzftApVAKdIig6vFP27Xaeysojd9ggU7Cvj7QGt+etvYukWNrXiucc7aEia32C5rpCSSZcAr06pO9Ap1CJjuOUf/8boqLAaJQ0GEbqEo1GePddcWu6abp591OG03Ha03Ha2jvUVl2OJZm1JLPbphQv/9iZlASTJwf8nkXzbHVRKh9PKHnbWnuH2u3B6dMhLs7Lk00Gx6bpZksyW3uHui5K9eNDmVteq9g03bxputlkcARd8agoePddib7E5GRITpaoLLETxi2SkmDJEvEaujsiOmXRIoiIAK1W0mAYqUskd1IXqabZavN30alWpfaLPtnZanO22jxpaLXbc2JiID4+4Le1R6jmDiz2/bTvolPfvq/U9RG1GpRKP28+QWP7MK5gTw+dVan9Tzf1f7qpC1VsttocRPUjIkCjkehLVKlApZKoLPESxmvExMDEieI1dHfwHuwUEKWmVVVgNoNaDQaD7ycGfIftigrQ6Xjd3LyqCjQa1wfMZtBqAynL6YS8PNDrW2/V6q8ubuA92KnQce7B3qGcYrdDXh5YrV7/SKemNltrXrMs6PWtP9A6Hdjb36oMAIFmTEUFpKaC08n3+ZmZUFDA/S9gp7hSXQ0aTUDZjU6hAjpFEKI4paICVCrIyWkvwf3U1Gxui9JSUCq5+6vfFCpVm1MCSYEAMsZqBY0mAKEAgNMJ8fFcxQU5hbxepQKHg+fT0SlUQKcIgr5TePywu9fU4YDU1NaxrFoNMTFtQ9vUVP4tiicBZIxGA1VVARdQVQVaLTkCQp0CAFYraLU8DwI6hQroFEFQdorDASqV39GHzQbjelW1ZqVSCUollJa29U38vVwgfDNGyPdhMEB2NlBxCgSgFXQKFdApgqDplIoKiI/39W1UVJDex7VBmn2dNUEMW6jAK2McDtBooLo6+GJ0OqiooOMUACgthdRUv89Cp1ABnSIIak4hQx6vXYyKCoiIaJ0EKSgAs/nMhirpa8rBK2OCG/W4Ul0NavWOSicdp5CPpFb7/ujoFCrI1yk7VgR8/ZSwdIrDASzrZQ6F/EaTtZjSUte/hKSmHP4z5sbIRSg5Of99KY+aUwDAagW93sfkNzqFCnJ1Cnf7QdfweWpyuDpFowGW9SIUpbJ1fsRjvlbWTgl08dgHTmdD3/gJGhuFt3IlLw/Uaqio8PwLL6eYzVQ+BTqFFgFcN9+zk9J6Jf12CD+nVFWBwQATJtz0IMu2bs5t/2uRr1OKi0GnoyMUAACwGsxWJcWOyg0cDtDpIDvbbQcQL6dQkgE6hRZ8m+BNl7nmR5g5pbQUYmJAr29tgdwGUB6JJlOnBLEbxR9mM6zpmwN5eRTfsw2DAZRKyM7mRMJ37EPDB+gUWvBrgjdfknYHv7cOM6eYzcAwEBPTdrqVwcDzq5CpU3Q6rwMKIbSu+4jwzm0FpKZymwAn317xv3/zc6JgJaBTaMGrCXqdnfVrljBzCsFuh6FDYeTIgF4kR6eIk0etTnE4QK0WffrUZvvmVt1PfVxO7PPdP8rOFmIFdAoteDVBNvCL5kOYOoXw+uutcyj8kJ1Tbj5JhyJt+1Oqq0GtFro+7Q+VCk7stbftHszJaTuVQasFlnX3mlrd3jlZfkGn0IJHE7S7LO64rf6s8PW6MHYKADidkJnZNr3iE3k5xWoFtVqksm7a80bOCRRpbgUAfMynkPX+CRPcJ9QFTCGhU2gRVBO08hoBhbdTCBoN6PV+nyUvp6Smum2foYiXfbQCugZ+8T9Hq9eDSgV5eW27E7Xa4KqPTqFFsE3Q6n/40xGc4nCAVuu3zcjIKcXF7j/dVPHiFH677IOD17qPzQY5OaBSQXY22O3gdPI5RcsTdAotgm+Chbk/A6cAgMPhdxOqXJzidIJWK+och/fzfXQ6yMkRo7gA9tE6nWAwtF6SwmAAvT7Q87/RKbQIvgnuWNFB99EGjlycIuaoh9DuOYR5eaDTUS8u4L35TicUFwNAq18COWcSnUILXk2QdElYq/uDrM8xATpFGvR6WLnUCZmZoFbT3eHmia/zkjUa6leHEXS+j8nEZy6MA51CC17rPukeJ/gc3+JnYz6gU6RCr4c9Ew0BtZ+g8XOtA5alc7LiDYJxCnftWxK8GxM6hRb8mqDHCYR+hQLoFKmY8werPZ7vldME4scpZEKH3hZbPC+ZCrJ0SlCgU6TAaq2O0a5ZIoVQgM913gIccfgGnUIFdIogfnZO0Wrf05klyxj/TiEb4Sh1mtApVECnCOLn5RSDAfR6KTOG17Uj6Z0PjU6hQsdxynffgVLZdnsJaYJhpC6RZeH116WuacHLVodSVaXJZllQq2HsWInKnTz5pluGtBdVmuyKxw3Ci1Mq4fXXJarayJEwcqREZUmcMGo15OaK19DdEdEpxcWgULTe2lqyYBipS8zIgIkTJa3pe6lVh2O1b060kf/GxcHIkRIVnZwMvXr5f9qMZ+21CtWMZ+0Ci1MoYOJEiaqWmAiJiRKVJXHCxMXBq6+K19DdEXfsI+XN60kwjNQlWixQXi5RTfftdtr1OfUJGqvZwT2YkgIsK1FNjUZITOT1zGPzihtjVUcWVQgpLjYWysslqhppftKUJVnCkEhJ6ShjH3QK3TiaX3o5SXcqK88zY2ToFIsF9lfaG2NV+3Y7gy4OnUIl0CmCoqM65Wh+aXOnCK8/+7J1isUCNtZUm6IPujh0CpVApwiKDumUY/OKnar4w0ZzexkjW6dYLHDhsQnH5hUHVxw6hUqgUwRF2Dllf6Xd9xOOLKpojFUdKrL6yBg5O+VMBnsmgw2uOHQKlUCnCIqwc0pzpwgff7WxpusKpQ+hWGTvFIsFalP0NtYURHHoFCoRHk5heVySFp3CJ4BhvD5+oNzm0KbWpugPllT7zRiZO2XfbmdjrMqtR3ag3Ob3hegUKiF3p7C8TyNEp/AJr07ZX2mvT9AczS/lmTEyd4rFAufSs09MM7g+wmdMhE6hEjJ2ipXXpa050Cl8wtMpB8pttSn6c+nZ/DNG/k6pNlXVJ2jcHmyIU/se1qFTqIRcncJd7oCfUACdwi88nXLhsQk1aZkBZYz8nWLxNqvid54FnUIlZOoUcqk3/jchBHQKv3B1yoFy27n07EA3dISLUzxnVez6HM8tfK6BTqEScnQKdwN2Ppdi4kCn8AnOKQfKbXWJWrdJB54ZExZOsVjgyKIKhzaV21m7v9LeFBXj4/noFCohR6dwnRTX8H0xWkCn8AvilKP5pXWJWj5LIV4zJlycYrHAsXnFFx6b4Fb99gKdQiXk6BS3lWNOMX6vcY1O8RvksqkObWpwQrGEm1MsFqhN0XPnQF5XKF3Ph3QLdAqVkJ9TXC5G2zqZYnW/5LVX0Cl8AhhGyFl2ljB0imv4nqZFp1AJGTuFM4iLZXDPm8AU8d35d4sT0wxnMthTWXmuGgprpxxZVHE5SdfeX9EpVELGTnFZ9MF9tLRShKdTDpTbatIya9IyyVYx14GSrJxSm6KvS9RycWKawW8vzMcuFXQKlZCfU7wtJLMelvEEncIn/Drl+JsFwDA+rm8kK6ccKrIeNpq5OJee3dwpgswZNXeKOJeefSaDdTvb4Gh+qUOb6vXd0ClUQo5O4daSuUlZlsf+N3QKn2jvV/pQkfVcenZdotbzTBnPjJGPU3zEvt1OMnZzquLrEzSul25oT6zoFCohR6cA11UhUypW/50UQKfwC3KuIBnRkHBoU68rlA1x6hPTDIeNZr/rQeHiFNc4ml/qekWY9sSKTqESMnUKuPRWeO7QR6fwjMNGs6tTjuaX+lhe9ZoxYecUy43LONQlam2s6Wh+aWOsytOe6BQqIV+nBAo6RbKMCUenWG5MvnDTuugUkQKdIijQKaIG9bVk34FOoRLoFEGBThE10ClUAp0SJOgUyTIGnSI80Cm0ENEpmzfjfQilCBneh5BW4H0IqUTHuQ8h3i9ZmpDh/ZJpBd4vmUqo1TBrlngN3R1xxz5S3ryewIhYoXYJSU059HrperZmM2i1EpUFACoV2GwSlUWanzRInDBSZgigU6iAThEJdAoV0CmCQKeICjqFCuiUIEGnSAM6hQroFFqgUyiAThEJdAoV0CmCQKeICjqFCuiUmy7L5BY+rqSPTpEGdAoV0Cm0COz6KZ7h+zpv6BQJQKdQAZ1CC15NcMeKdpzi7xrX6BQJQKdQAZ1CC77XjnS/7YYd0v3dQgydIg3oFCqgU2jBzyke7iCjIR8DH0CnSAU6hQroFFoE2QQLc/0MfACdIhXoFCqgU2gRVBPkMfABdIpUoFOogE6hRTBNkM/AB9ApUoFOoQI6hRbBNEE+Ax9Ap0gFOoUK6BRaBN4E+Q18AJ0iFegUKqBTaBFwE+Q58AF0ilSgU6iATqFFwE2Q58AH0ClSgU6hAjqFFgE2Qd4DH0CnSAU6hQroFFoE1gT5D3wAnSIV6BQqoFNoEVgT5D/wAXSKVKBTqIBOoQVeP4UC6BSRQKdQAZ0iCHSKqKBTqIBOCRJ0ijSgU6iATqEFOoUC6BSRQKdQAZ0iCHSKqKBTqIBOCRKjERgGAwMj9PHYY+I1dHfE7adIefN6EgwjdYkWC5SXh6CmXKSkAMtKVJbRCImJ0lUtNhbKyyUqi9yuXJqyJE6YlJSO0k9Bp0iWMegU4YFOoQU6JfxSxDNj0CnCA51CC3RK+KWIZ8agU4QHOoUW6JTwSxHPjEGnCA90Ci0CcEphLt+7hRHQKZJlDDpFeKBTaBHYvU1b7/Lj9t92QKdIljHoFOGBTqEF33uGud11sPXOhP7uQ4hOkSZj0CnCA51CC15OYW+Md3bceIS7g/KO9l+FTpEsY9ApwgOdQotA+ikZkLii9RHsp4QwRTwzBp0iPNAptODlFK5XwnmE5TFNi06RLGPQKcIDnUILvus+rR2TDPcOiw/QKZJlDDpFeKBTaBHAWvJNvRUeWkGnSJYx6BThgU6hRWD9lEJ723xtor8L6KNTJMsYdIrwQKfQgpdTWgc+NzomrpvfcN1H+hTxzBh0ivBAp9CCh1Nu7HBz7ZWwPHbTolMkyxh0ivBAp9AiSKdwU7boFOlTxDNj0CnCA51Ci0D2vLlMyuL+lBCmiGfGoFOEBzqFFoHtT2ntldzoueD+lJCkiGfGoFOEBzqFFrzXkm94xHXnm2/QKZJlDDpFeKBTaIHXTwm/FPHMGHSK8ECn0AKdEn4p4pkx6BThgU6hBTol/FLEM2PQKcIDnUILdEr4pYhnxqBThAc6hRbolPBLEc+MQacID3QKLdAp4ZcinhmDThEe6BRaoFPCL0U8MwadIjzQKbRAp4RfinhmDDpFeKBTaIFOCb8U8cwYdIrwQKfQAp0SfinimTHoFOGBTqGFiE4xGqFzZ0hMlDQYRuoSExMhISEENeUiKgpUKonKiosDhUK6qnXuDAkJEpUVGwuxsRKVJXHCREXBpEniNXR3RHTK2bPwxhtgNksaf/qT1CWazVBZGYKacvH++/DZZxKVtWkTzJolXdXeeAMqKyUqa9kyMBgkKkvihHnnHdi7V7yG7o6ITkEQ5GcIOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJr8fxktJZcKG/BkAAAAAElFTkSuQmCC" alt="" />
 
 
 
 
 #include <cstdio>
#include <cstring>
#include <queue>
using namespace std; struct Point{
int x, y;
}s, t;
//骑士行走的方向
int dir[][] = {{, }, {, -}, {-, }, {-, -}, {, }, {-, }, {, -}, {-, -}}; bool inChess(Point a)
{
return a.x >= && a.y >= && a.x < && a.y < ;
} int bfs()
{
if(s.x == t.x && s.y == t.y)
return ;
queue <Point> q;
bool visit[][];
int dis[][];
memset(visit, , sizeof(visit));
q.push(s);
visit[s.x][s.y] = true;
dis[s.x][s.y] = ;
while(!q.empty()){
Point a = q.front();
q.pop();
for(int i = ; i < ; ++i){
Point b;
b.x = a.x + dir[i][];
b.y = a.y + dir[i][];
if(inChess(b) && !visit[b.x][b.y]){
visit[b.x][b.y] = true;
dis[b.x][b.y] = dis[a.x][a.y] + ;
q.push(b);
if(b.x == t.x && b.y == t.y)
return dis[b.x][b.y];
}
}
}
return -;
} int main()
{
char s1[], s2[];
while(~scanf("%s%s", s1, s2)){
s.x = s1[] - 'a';
s.y = s1[] - '';
t.x = s2[] - 'a';
t.y = s2[] - '';
printf("To get from %s to %s takes %d knight moves.\n", s1, s2, bfs());
}
return ;
}

POJ 2243 Knight Moves的更多相关文章

  1. POJ 2243 Knight Moves(BFS)

    POJ 2243 Knight Moves A friend of you is doing research on the Traveling Knight Problem (TKP) where ...

  2. POJ 1915 Knight Moves

    POJ 1915 Knight Moves Knight Moves   Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 29 ...

  3. OpenJudge/Poj 1915 Knight Moves

    1.链接地址: http://bailian.openjudge.cn/practice/1915 http://poj.org/problem?id=1915 2.题目: 总Time Limit: ...

  4. POJ 1915 Knight Moves(BFS+STL)

     Knight Moves Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 20913   Accepted: 9702 ...

  5. HDU 2243 Knight Moves

    题目: A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find th ...

  6. POJ2243 Knight Moves —— A*算法

    题目链接:http://poj.org/problem?id=2243 Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  7. 【POJ 2243】Knight Moves

    题 Description A friend of you is doing research on the Traveling Knight Problem (TKP) where you are ...

  8. POJ Knight Moves 2243 x

    Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13974   Accepted: 7797 Des ...

  9. POJ---2243 Knight Moves 使用A*算法的广度优先搜索

    题目链接:http://poj.org/problem?id=2243 启发式搜索:启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标.这样可以省 ...

随机推荐

  1. The ‘Microsoft.ACE.OLEDB.12.0′ provider is not registered on the local machine. (System.Data)

    When you try to import Excel 2007 or later “.xlsx” files into an SQL Server 2008 database you may ge ...

  2. 闭包(Closures)

    浅析 JavaScript 中的闭包(Closures) 一.前言 对于 JavaScript 来说,闭包是一个非常强大的特征.但对于刚开始接触的初学者来说它又似乎是特别高深的.今天我们一起来揭开闭包 ...

  3. 【Linux】设定一个能输入中文的英文环境!

    引子:centos startx 进入桌面后使用中文输入法 这个解决方法太蠢了,而且只适用于centos等red系系统... 在此提供一个更加通用的方法 => 只要设置好系统的locale坏境变 ...

  4. 3.9 spring-自定义标签解析

    到这里,我们已经完成了分析默认标签的解析与提取过程,或许设计的内容太多,我们忘了我们是冲哪个函数开始了的, 让我们再次回顾一下默认标签解析方法的起始方法. 入口如下: /** * Parse the ...

  5. Django 后台搭建

    # Django settings for gameadmin project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Nam ...

  6. [LeetCode]Divide Two Integer

    Divide two integers without using multiplication, division and mod operator. 思考:位运算.AC的时候真的想说一句“尼玛.. ...

  7. Android进程守护

    http://blog.csdn.net/t12x3456/article/details/8982198 http://blog.csdn.net/ljx19900116/article/detai ...

  8. http://nxlhero.blog.51cto.com/962631/1666250?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&plg_usr=1&plg_vkey=1&plg_dev=1

    http://nxlhero.blog.51cto.com/962631/1666250?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&am ...

  9. Android:为控件绑定监听器

    为控件绑定监听器主要分为以下步骤: 1.获取代表控件的对象2.定义一个类,实现监听器接口3.生成监听器对象4.为控件绑定监听器对象 实例:Button按钮----监听器OnClickListener ...

  10. Android 通过广播启动另一个应用的Activity

    需求:现在有应用A和应用B,我需要在A应用中启动B应用中的某个Activity 实现:A应用中的Activity发送广播,关键代码如下: String broadcastIntent = " ...