Knight Moves
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13222   Accepted: 7418

Description

A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.

Your job is to write a program that takes two squares a and b as
input and then determines the number of knight moves on a shortest route
from a to b.

Input

The
input will contain one or more test cases. Each test case consists of
one line containing two squares separated by one space. A square is a
string consisting of a letter (a-h) representing the column and a digit
(1-8) representing the row on the chessboard.

Output

For each test case, print one line saying "To get from xx to yy takes n knight moves.".

Sample Input

e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.

Source

 
 
 
解析:题意为求从棋盘a处到b处需要跳动的最少次数。广搜一遍即可,要注意骑士的行走方式。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXEAAAEiCAIAAACA/3WqAAAgAElEQVR4nO2dfXxT1f347+YGFQimtMNSEDPAWtFqoMJCYRIRNV9pR1lRoSpExVpc1crDqFO4K06qUgyCrIYHU3loQQstRSidSESBCr+MDEQ6GCPjMVAKgdISWmk/vz9OuQ1JmtzknntzUz/v1+cPSJOcnJvPeec83XsZQBAEoQcT6g+AIEiHAp2CIAhNfu5OaWlpmTNnL8MYx4zZfPXqtVB/HFnQ0tIye/aeDnBMWPb/MYyRYYx9+665csXZ1NT0008/hfpDBQP3dTQ0OFtaWkL9cfzws3YKl3MMY5w9u2Lv3r3//Oc/m5qa5P+1iUdx8X+4Y/LMM6V79uzZuXNnOB6T1NRK0g6XLLEwjHHVqqpdu3ZZLBan0xnqjxYArl/HnDlb9+zZs337dpl/HT9rpwDAmjWHGcbYrdvSTz/dOHXq1PT09D179jQ2Nob6c4WS778/+6tfGRnGOH9+6bRp01JTU/fu3Rtex4T7tSgt/eHFF0u7djUOHvzohg0bVq5cmZ6efv78+ebm5lB/Rr4UFR0hdTEYNhUUFAwcONBsNtfV1clWKz93p5Bfs549V5SUlD300EO9evV64403Ll26FOrPFUrIYJAck9GjR8fGxobXMdmz51ynTssYxtinz6odO3aVlZUNGjQoLS0tIyNjzJgx0dHRU6ZMuXjxYqg/Jl9Iit5++6fl5VteeeWVnj17jho1qqamJtSfq11k5xTyC9O375odO8506rQsMtJ07NhlkcqqqbnatesKhjGOH782Lc1Efg1mzjQ2NDSIVGJ7NDT8NHjwevIBRK1ye5DDHhlp+uGHC4MGlTCMcdiwVatWrendu3dkZKTRSOeYuPbkv/vOLvwN3XA9jCS6dVuanf1Ov3797rrrrvfee2/9+vUPPvjgQw89dO7cOSolutaob981Tifl+RouRYcNW1VaunHYsEcZZlHnzkv+9a+TdAuiiLycQpS8Y8fpXbtOk5+avn3XXL7ccP36dTGK437QnnhiDZcZMTGmurqrYhTXHpxGr1xxXr7sHDSoJDl5S1OTKFX2Cjnsy5b9eOnS1Wee2UaOybRpJe+++25kZGRsbKzVahX4FZC28cYbu65caSTOGjNmc2OjKDOmpDq33bZi7dqvNm/ePGnSpN69e2s0miNHjjidzm+//Xb37t1UhnKkoMhI0+HDtZcuXSX1YhjjHXesrq+/RmVswqXo9OnrP/lk9S9+sZgUkZX1jUiNQjgycgppWmPGbP7Pf/777bf7IiKWMoxx0qTyvXv3Hjhw4PTp09RLJJ18hjH+8Y9F06dP//3v32cYo0KxbPPm75uamqgX5xVS6+TkLadP26urq0ePXs8wxt//vvjCBYc0A2bXw/7jjz9qtevIQfj0041PP/20QqEYNWrU2bNnhRRBGkZy8paLFy/9+9/HBg5cwzDGpKTV1dWHqR/n+vqmBx74nGGMw4ev2bZte2VlZX5+/pgxY3Jzcy9fvtzS0kJr9Yfrobz4YsXBgwctlgN33VVIJrZtNtvJkyfr6+uFf4Pk2+neffknn5THxy+Mjo675ZYlDGMcMaLIbN7hdMpxGUguTuF8vHr19zt27Bg79hly7GbM2LBhw4bBgwdv27aN7hFsaPiJ6+Rv3lyRm5v7+ONvkSyZNWvZggULrly5IvYXxtV67VrLnj175s+fHx09m2GMH3ywYerUqf/73//E/i1yPey7du1KTX0qMjKfTKasW7f+nnvuUSgUc+bMqaurC7oIrvdeXn5o375906YVkYP8wQcbXn/99ZKSkoaGBorH+fvvz5IajRu3Zvv27YWFhZMmTYqLi5s+ffqlS5coFkQ6Kd27L1+79quVK1fefXdCr14fM4xx6NDCtWs/X7Bgwbhx4/71r38J9Bc33/fmm18kJ0+Oj3+WHL3x49cuXbp06tSpFy5ckJtW5OIU4uNRo0q2bdv+9ttv9+s36pe/LODmumNiYu677z6yikarRC7XZ8zYsGLFit/+9rdK5WgyAjcaS4YPH15YWHj1qriDIJIxo0aVbN/+zezZs/v16/eXv/xl1apVa9euffTRR4cPH37s2DFRVyjIB4iN/ewf/9jOsmz//o/84hd/ZxhjWlpxQUFBVFRUdHR0eXm5kJEC+WYfe6ysqmrP8uUrO3XKJQ2vpGRDWlraHXfcUVZWdu0atV0wXPfhjTe+2Lp1a1ZWVlRUVNeuXdVq9Zo1ayguJHOtfePGzZMnT46P15FDp9GsNBg+uv/++++///6XX375yJEjQX+DNTVXu3RZzjDGRx4peuqpVTqdbtCg2aR2H35Y/u67795+++25ublXrlyhVSkqyMIpXPPOySkvLS0dMmTI7be/SL6w8vItr732mkKhiI+PP3bsGEUlkyW67t2XFxZuIkUoFBMZxvib3ywvKSkbPnz4I488QmsmzyuutS4uLu7fv//vf//70aNHf/3111qtNjIyslevXkVFReLtp+A+wMSJ68vKyoYMGRIVNZmkbH5+2dSpUxUKxcCBA0+cOBH0YeeKeOutzevWbSZ9z+HDDf/4xz/efvvtXr163XbbbQsXLqyvr6dVKW4yZdWqLZs2bXrkkUe6du36xz/+ccOGDadPn6bY7yMDZ41mZWnpxqSkpK5dnyaHbvr09e+8806PHj1GjRr1wQcfCFkv4/z40EOrjcYVkyZNiYh4h7SLsrIv9Xq9QqF48sknL1y4QKtSVJCFU7geuMGwaf78+b17303moshc98iRI7t06ZKenk732HErpl98UTp8+PCuXSNJtz8trXj9+vX9+/fv3bv3jz/+KF43gcsYg2HTvHnzBgwYoFKpCgoKLl++vGfPniFDhgwaNOif//yneMMf7gMsXPjl4sWLY2IGkMOuUCxbtmzD8OHDu3XrptfrhSy7ct8sCYVi1ksvvbxp0yaWZe+8887IyMjf/va3O3fupLW9lVv36dWrsKLiq5KSElJKQUHBpUuX6H6VZ8/Wd+my/De/Wb5u3fo+fUYwzBIySVRSsoHMQ40fP/7kyZNCfgW5XTYzZ5YWFhY+8MDwX/7yYyKy9etLhwwZ0q1bt9dff11uy/yycArpMigUy0ym8oyMjC5dniKHcsaMDUVFRb1791YqlZ988gnFJV5uMiUtrfizzz6LjY3t2nUk6bZ89tmXH3/8cY8ePXr37i2k4+oXrtaFhZteeeWV6Ojohx9+mGRhY2PjgQMHqqurKQ4KPCFOIYf95ZdfjogYTw77sGGrVq5cTQ67wFVk1/1aixcvzsrK0uv1ycnJDz/88EMPPTRgwIAlS5Zcvkxt4ZzrFo0YUbR16z8+/PDDqKio2NjYvXv3iqHmnTtPkc2BJP7yly/Xr1//4osv9ujRo2vXrtOnTxdSNc6PSUmrv/xyS1ZWVpcuD3HtorCwsGfPnlFRUaL2ZINDFk7h1l8++GDDkCFTf/WrOeSr+vDD8scfz4+MHNCnTx/hy5mucL+fCxZszMnJUSp7knF+Tk75hg0bxowZ06VLl6SkJFHHPmQLL8MY588vfe6553r06DFt2rT//vfcnDn/r6Wl5fr162Lv9XQ97A8+mHnrrVmdOn1CVpHT0vKUygeFH3bOKfn5ZZmZmbGxscOGDZs5c8ngwXPHjRu3evXqixcvUhzPcj2vP/+5bMuWLc8//7xCoXj44YcFrlt5Qhr8mDGbjxw5+v777z/99NMvvPBCfn7+vffe26tXr1tvvfWee+75+uuvhUz/cSmalla8atWquLi4W27JIr8Bn3xS/rvfvXf77b3uuuuuo0ePym1PsCycwrUuhjF267b4nnte5P47YsSfH3jggf/7v/+jmxakRIVi2YoVZSkpKb/+9WsMY3zuuY1bt26dMWNGdHR0t27dMjMzHQ4HxULdOHeugczA9ey54p138gYMGJCT80n//mvOn3dIsOQENx/2rl0XuR72gQPnDB06dMyYMQIPOxkgkIaRk5PTu3fvRx6Zdf/9n2zbtv3o0aN0V3zAZbCwcOGXGzduTEpKUigUAvsLXnHd6sYwxt/97o3Bgwfn5OTk5eXdc889w4YNKy8vFzhJxBWxYMHGt99+m/vZI8sI48ZNeeKJJ6hPCFBBFk6pr2+6//51pHWtXVvy9NPzybHLzv585syZOp1u7NixNTU1FH383Xenb721bZx/yy0fzZ//6c6dO996662+ffsqFIr77rvPYrGIvZR78qSDbMMhkZi44scfq0+dOvXBBx98//33jY2NopqlpaXliSc2kcHOunVfZGTMu+WWT8gq7MyZM1NSUh5//HGBh72lpeXTTw+4Nr8//GFldXX1oUOHXnvtte3bt9OtI5mg7dWrcPPmyqKiotjY2B49eogxOuAGWa7x5JPrvvnmm3379tnt9mvXhO55Gzt2K2kRn3++ISUlpVu3br/5zRwilBUryt58880RI0Y88cQT58+fx7Vk71y7dm3Tpk1FRUVvvfVWXFzcq6++unbt2iVLljz99NNRUVFz585dv349xf0FLS0tdXV1s2fPLigoyMjImDlz5ldffTVr1qw777xzwIABffv2/eijjyRYomtubt6/f//ChQvXrVu3dOnS6dOnz5w5U6vVLlmy5Isvvti/f7/YW++amppKS0tXr1791ltv9e/ff8qUKcXFxUaj8ZlnnomOjv7b3/5WVlZGtooFXcT169fNZnNhYeHnn39eUFCQm5s7Y8aMwYMHFxUVLV26dO/evbTqyE1ATJhQUllZybIsmQOurq6mPjpITa3s23fNxo3b+vf/1FUrc+cWHT9+nMpPUXNz87lz58hXc+eddyoUir/+9a8nT55cvnz5jBkzhg4detttty1dunT16tUUV82oIBentLS0nDx5MikpSalUdu7cOSEh4fnnn+/Xr99tt92mUCgmTpy4YcMGurtFWlpaDh06pNVqe/To0adPn+Tk5ClTpjz11FNqtXrhwoW1tbXS6P+nn35au3Ztv379evToERkZeffdd0+dOjUzM3Pr1q1UNmL6paamZty4cT169CCH/ZVXXrn77ruVSmX37t3/9Kc/7dy5U/g29mvXrv31r38lvYbo6OgRI0ZkZ2dnZmZ+8cUXAoV1c0Va+w4ffbS5rKxs9OjRXbt2HTt27Pnz56m8P4HM7kdGmnbt+vcPP/wwZ86crKys559fQpzy2mtrMzMzrVYrlZWs5ubmZcuWpaSkdO/evU+fPl9//fW1a9fWr18/cODA7t27R0dHv/jii4cOHZLbJn25OAUArl+/fvTo0cmTJz/66KOLFy8+efJkeXn5E088MWXKlI0bN1JMPtcSDx48+P7770+aNOnPf/7znDlz5s6du337drobLv1y9erVbdu26fX64cOHT548uaCgwGq1Up9raI/m5uaTJ09mZ2enpKQYjcbTp09//fXXycnJL7300qZNm2jN7Fy+fPnvf//72LFj77333meffXbRokUHDx6kIk3SyO+4Y/U335zu1GnZ6NEbKioq58+f37NnT6VSuWDBAro/48Rc3bsvX7Nm67PPPjthwoSnnnrqzjvv6tYtj0xFz5w5c/jw4UeOHKHS1K9cubJgwYLx48dnZmYSOTY2Nm7btu2FF17429/+9sMPP0h2Egl/ZOQUALh+/frFixfPnz/f0NDQ3NzsdDpra2sdDofw0amPEq9cuXLx4sWLFy86HI66urqQfEmNjY0XL16sqam5ePFifX29xJcja25uvnTpUm1tLRHZtWvXqB/2lpaWhoaG2tras2fPXrhw4cqVK7R+Xcn6SGzsZ6++alYqP928+fuioiKNRtOtW7cBAwbQXS4k/OEPFWTya/Tox1566aWMjIxXX/2MYYz33ff3VavWkMspmEwmKt1qMki/cOGCw+EgIziy1cDhcFA8hnSRl1MQJFCuXGkkE/y33lrw8cfF33777ahRo3r27BkdHT1z5kwxVu6am5vz8r5ym6DNz9+9Z88esjlFqVR+/PHH0l8xQyagU5Cwp6mp6aOPPho/fvzjjz+ekJAwevTo/v37jxw5Urwti42NjYsXL05JSZkwYcKnn3761Vdfbdmy5Zlnnhk5cuQDDzyQmJgowaKhbEGnIB2B+vr6uXPnxsXFvfDCC88999yzzz5rsVhEHULW1dUtXbpUo9EkJyfPmzfvo48+KiwszM3NffLJJ8vKyn62nRRApyAdg5aWlosXL5aXl69cuXLXrl01NTViz0mRGaLTp09/++23lZWVy5Yt++abb6qqqs6ePSve9F9YgE5BOghkdvnq1atSzrKTizw5nc4rV65cu3ZN5le0lwZ0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0EdEpDgfMng1ms6Qxa5bUJZrNUFkZgppyYTBAcbFEZW3aBO+8I13VZs+GykqJylq2DJYtk6gsiRPGYIC9e8Vr6O6I6JTCQoiIAK1W0mAYqUvUakGjCUFNuYiJgfh4icpSq0GplK5qERGg0UhUlkoFKpVEZUmcMDExMH68eA3dHRGdYrOBSiXe23uHCcVgLiQ15dDrwWSSqCyzGbRaicoCAJUKbDaJymJZYFmJypI4YaTMEECnUAGdIhLoFCqgUwSBThEVdAoV0ClBgk6RBnQKFdAptECnUACdIhLoFCqgUwSBThEVdAoV0ClBgk6RBnQKFdAptECnUACdIhLoFCrI3SnHt0BiBhTa/T8TnSIN6BQqoFNoEUATZDMg8UagU1xBp4gEOoUKsnSKHdJdhIJOcQOdIhLoFCrI0ik3YNEp3kCniAQ6hQroFEGgU0QFnUIFdEob6BSvoFNEAp1CBXSKINApooJOoQI6pQ10ilfQKSKBTqECOkUQ6BRRQadQAZ3SBjrFK+gUkUCnUAGdIgh0iqigU6iATmkDneIVdIpIoFOogE4RBDpFVNApVECn3MBlhz5r9f90dIo0oFOogE6hBb8maL3pZJ9EfmZBp0gDOoUK6BRa4PVTKIBOEQl0ChXQKYJAp4gKOoUK6JQg2bsX70MoReB9CKlEx74PYW6ueA3dHRGd8t13wDAYGBihj1mzxGvo7og79omNBYtF0mAYqUu0WKC8PAQ15SIlBVhWorKMRkhMlK5qsbFQXi5RWRkZkJEhUVkSJ0xKSkcZ+6BTJMsYdIrwQKfQAp0SfinimTHoFOGBTqEFOiX8UsQzY9ApwgOdQgt0SviliGfGoFOEBzqFFuiU8EsRz4xBpwgPdAot0CnhlyKeGYNOER7oFFqgU8IvRTwzBp0iPNAptAjAKYW5Ad8zDJ0iTcagU4QHOoUWfJ3CBnhSMqBTJMwYdIrwQKfQgpdTdqzwfq2DHT5fhU6RLGPQKcIDnUILXk5hXQY7/EdA6JTgYt9u52GjudpUxT9j5OyUEzMX8a+LW6BTqIT8nGK92R0uV3tDp9BKkQPltjMZ7NH8UosFjiyqqEvU1idozmSwPDNGtk6xsaam6F6np84Nrjh0CpWQn1M8aJ1byYXjPp+GTuEftSn6y0m6xliV64NnMtjmThE21mQ1O3xnjAydcrCk2qFNva5QXusz4FCRdX+l/bDR7LsinoFOoRJh4xSco6WVIvt2O5uiYg4VWd2cQv7k0KbWJ2h8tEa5OWXfbmdtiv66QmljTWcyWBtrsljg+JsFTlV8TVpmQMWhU6iE7J1i5dVJAXQK76hN0dtY04FyW1NUjFd31KboD5ZU+8gY+TiFSNDGmqpNVTbWVJui5/502GhujFUdNpr5F4dOoRJydwpZA/K94kNAp/CJQ0XWhjj1/ko7aY11idpABwjycQqpwpFFFRYLWM2Ohjj1qaw81ycQrfAvDp1CJeTtFCvfDW+ATuEX1xXK/ZV27r9H80sd2tRAM0YOTqk2VTlV8XWJWvLfw0ZzQ5x6326n63OIaA6U23gWh06hErJ2CstbKIBO4RHH5hU3d4pwfcRqdjhV8a6W4ZMxoXIKmXk9l55NFqpcB2g1aZmXk3Se7xCQNNEpVEK+TinMdRdK4QpfsyroFN9hNTvqEzRkpOAaRxZVeG2NPjImVE5piFPXJ2hOTDN4zpI0xqoOFVm9vklTVAxPaaJTqIRMneJ9K+0KXy9Bp/iO2hS9p1BInMlg3X72fWeM9E7Zt9t5OUnnOgXrFmSSyOufDhvNdn0On+LQKVRCjk45viXI+xCiU3yE21yDW5DVE54ZE5J+SnvdEIsFTkwz+LaG77pzgU6hErJzSntCwX20oqYIWWDmmTFymKN1Dbs+x23FJ7hAp1AJ2TklaNApQqI2RX/hsQk8M0ZWTrGxJv4zJr4DnUIl0CmCosM4ZX+lHRiGZ8bIyil1idpj84qpFIdOoRIdxynFxdCpEyQmShoMI3WJiYmQkACdO9N/213ddbu66x673+77aVFRoFJJVNO4OFAofD1h2CDn6U4qv5+ZZ3TuDAkJElUtNhZiYyUqS6SEaS+iomDiRPEaujsiOmX/foiJAbNZ0mAYqUs0m6G4WJSa7qh0Xhiq+3F2se+n6XQwa5ZENTUYQK329YTj6TnH03NoFRcTA8XFElVt8mSYPFmiskRKmPZCp4P588Vr6O6IO/aR8ub1BEbECrWLiDW1WkGt9v0UvV66nq3ZDFpt+3+uqvL7aQNCpQKbjeL7+YJlgWUlKkvipiFlhgA6hQri1tRkAr3ex99l5JQJE6C4mGJx6BQqoFME0QGdAgDZ2WAwtPdHGTlFqwWzmWJx6BQqoFME0TGdYreDRtNe85KLUxwOUKvpOgCdQgV0iiA6plMAwGCA7Gyvf5GLU3x2poIDnUIFdIogOqxTAECng4oKz4dl4ZSKCkhNBaeTbnHoFCqgUwTRkZ1itYJG49luZeEUjQaqqqgXh06hgnydctOpySv8Pz8snZKdDVqtl/DWQeCQrqbeugOhd4po9UenUEGmTvG8DyGf6+aHmVPs9nb3zOl0wDDtfTOS1tRj2iL0TsnLg5wcMYpDp1BBjk5xvRqT62nKfs9LDien6PWgVrc3D+obSWtqt0N8PDgc3AOhd4o4Ax9Ap1BCjk45frM72I7nFLMZGAbsvK+LeTNS17S42HUEFHqniNb0231jpxPy8kClAobxFYFslkGn0CLwJnjjPoTpW/w8MWycQuZQBBz1ENSUtCirFULuFKcTYmKC1rFvvDuluhr0esjO9iOy0aNhwQL+ZaFTaBFgE7whFD5Xug4bpwj+mQ1JTVsHQXZ7iJ2SmQl5eSIV5+WbKS4GtZpXhdPTAzou6BRaBLvuw2PpB50iOgUFkJkZYqeI1kkBr9+MRuO/uIICqKric/qlK+gUWgTcBF0XgHwPf8LGKampUFra9t/S0pv+y4OQOQUAsrPL1GzInFJVBRqNeMUFY3uTqW3OOJBsQKfQIpgpzbYOi8/l5LBxitMJKlXbr5/ZDKmpbfN8en3rcnL7hNIpAJUDs/dMpLwpvj3cnVJRATqdeMUF5hQyzxIR0baZCJ0CAGHhFAAozG3Vio+bnIaNU8DnUTeZWre9tX/BgdA6Ra+Hq7fFQHW1BGW5OyUz0/duQIHwdQrpm8THu3+J6BQACBentO5S6Rj9FACw2UCr9ZO/riuXN3f4Q+6UillmiI+ne+0Sr9zkFJMpuO08/PHvlAkTWvuSXjfIoFMAQI5OsXqZkSVO6SDzKYTiYpgwge+TU1NBo2ntv+h0J7+zhdYpJhOAw+H3HALhtDnF6QSNhixmi4cvp1RUgFYLqam+Xo9OAQAZOsV1uad1pHNjRdnHwAfCzikQyLF3ONq27VdU/NRHVdkltTUruZDqa2z71NXVoNG4brGlTptT2r/2AkW8OyU7GxgGdDowm/2cCY1OAQAZOqW9e4b53aISfk4BALU6iJ96mw0yepa6OyUmpq0vo9VCdrZIa643ZYw41xzgaHMK7Uu6eaXNKTYb6PWg1bbOm/AE96cAgAydAh5a8buDlhCWTjGb+W6pcsF7TW22m85CNBh8XKtNCO4ZI6ZWWp0iwiXdvNLqFLLTxGRqPZLilItOoQVeP8UDpzPQrgrfmtpsbT0X0kJonHrnJWMyM6GgQPg7e2I2Q/IIB2i1Ys+kEDJ6ll4dqQOtVtQBHQGdQgt0CgUCqKnd3vpjy/Xk9XpgWSFtxkvGOMRq9t9tcliV4gvFZAKWBbW6skvq2cIKCYQC6BR6oFMoIKimJhPk5EBEBOh0UFDgd3+dJ94zRgytOBwOtXbKg2IKxW4HlQpSU4FlwWrFax1QoeM4Zf58P2eiY7iGjqkoYDLNjNbMaE2MXvgbxjPVVkYdwThpfcIqRqNhqkQ9CBWMTsdUhPy76Hgxdqx4Dd0dcfspeA/24MLGmrh0qE3RW80O33fYbu8e7CemGc6lZ1P5SMfmFV94bAKfe7AHEVazozZFDwxz/M0C18fxHuxUouPcgx2dQiVsrKkhTl2XqK1L1J7KyvOaMe05xWKBMxnsmQxW4Gc4WFLdEKfet9tJ1ykHym21Kfq6RG1jrMrGmjyfgE6hEugUQdHxnGKxwIFy22Gj+bDRbNfn1KboT2XlufZcfDvFYoEzGaxdnyPkA9QnaKpNVRYL0HKKjTXZ9TlOVbyNNR02mtvriKFTqAQ6RVB0SKe4Btcajyyq4DLGt1MsFjiVlefQpvoeQ7UXtSl6rhNBxSk21tQUFXMqK2/fbqfvZ6JTqAQ6RVB0eKeQ2F9pv5ykA4a5rlBuu0Nf8bjB70uO5pfWJ2gOllQHVJCrUCwCnLJvt9OuzyEzRA5tKs+PgU6hEugUQfEzcQoXVrNjodpUpcluiFP77YkcLKmuT9AczS/l+eY1aZluk6ZBOGXfbufR/NLGWFVNWuahImtAr0WnUAl0iqD4uTnFcmPsc6jISpruufTsMxms1ylPiwWsZiMgLWAAABR0SURBVIdDm8pn1vZUVl5DnNrtwSCcUpuir0/Q7K+0B1E1dAqVCA+nFObyumcYOkWajOHmU6xmx4lphjMZbG2K3q7POVBu8/qSMxmsQ5vqYzrjXHp2bYre8+X8nXI0v/S6QklGOsHN41jQKZQiDJzC54JMgE6RMGO8ztGeyWCbomLOZLBe+whH80t9aKUuUXvYaPZ83K9TDhvNRFiXk3TtGY1/oFOohOydcuPiKeiUUKWIZ8a0t+5jY01nMtjGWNWprDzPadEjiyq8auXIoorLSTqvb+jpFCIRpyqezL/WJWrPZLD8p2x8BzqFSsjdKdyVaNEpoUoRz4zxvZZM1lycqviatEy3P5HeituDDXHq9iZTXZ1CZnyJRAJdTuIZ6BQqIWunHN8C6eiUUKeIZ8b43Z9CoiYt03MnrttqsVfLcGEyONb0zG7uFAEM41TFk41w4gU6hUrI2Cl2SM+F41Z0SohTxDNjeDrFanaQPf6ucyXkQdIxOVBuq0vUep0HOWw016Rl1kWpFtxh8LtXjVagU6iEfJ1SmAuF9huXvEanhC5FPDOGp1NIHDaa6xK1wDDcWTZWs6M+QWN/4S03oZA+CzdRcvzNApPBIcY5hO0FOoVKyNQpx7fcuGQkOiXUKeKZMQE5hQtyCl9DnNpqduzb7XQ89IfLQx751zcOiwVOZeU5VfEObarbbKtI5yW3F+gUKiFLp5BRD/k3OiXUKeKZMcE5hcShIuuZKbMb7h5k1+e0/OrXDfcNJXtbvE67olOoBDrlxqiHgE4JdYp4ZkxATjlYUk3Ocubi2Lxi5513/9S9BzCMjz24FnQKpfjZO8Xq/V4cfu/IgU6RLGP4O+VQkdWpiiczta7REJ/YcsuvgGFqkyf/WLyfz1qyBIFOoRLoFEGBTnELq9lx/M0Cbk8amT3xfNrxNwvq7x0KDNPU4/b/vvf5dYUyuH20dAOdQiXk5xQ3cOwT6hTxzBivTqk2VV14bEJTVExNWqbfPWl1iVpy8QSy4Y0sMJMzEl3lgk6hEuiUm0GnhDpFPDPG1Slcx6Q+QXNsXjGfvSSHiqwNcer9lXZyRVhuu+2BctuJaYa6RG1zpwiyX7Zyaik6RXigU24GnRLqFPHMGOIUq9lBzu7h0zHhwnXPGzDM/kp7U1SM23P27XaS83ps6tTaX8f4OOOZbqBTqITsncIbdIo0MUHnMI9kz6VnN8aqzmSwAV1YwFUoFgvUpugtFvDclsKF0QiP3W8/lZXXGKsiu+BErRo6hUqgUwTFz80pVrPjQJTWPJI9Mc0Q6GVK3ITChY8d+q7zKWS3fkOcWryzftApVAKdIig6vFP27Xaeysojd9ggU7Cvj7QGt+etvYukWNrXiucc7aEia32C5rpCSSZcAr06pO9Ap1CJjuOUf/8boqLAaJQ0GEbqEo1GePddcWu6abp591OG03Ha03Ha2jvUVl2OJZm1JLPbphQv/9iZlASTJwf8nkXzbHVRKh9PKHnbWnuH2u3B6dMhLs7Lk00Gx6bpZksyW3uHui5K9eNDmVteq9g03bxputlkcARd8agoePddib7E5GRITpaoLLETxi2SkmDJEvEaujsiOmXRIoiIAK1W0mAYqUskd1IXqabZavN30alWpfaLPtnZanO22jxpaLXbc2JiID4+4Le1R6jmDiz2/bTvolPfvq/U9RG1GpRKP28+QWP7MK5gTw+dVan9Tzf1f7qpC1VsttocRPUjIkCjkehLVKlApZKoLPESxmvExMDEieI1dHfwHuwUEKWmVVVgNoNaDQaD7ycGfIftigrQ6Xjd3LyqCjQa1wfMZtBqAynL6YS8PNDrW2/V6q8ubuA92KnQce7B3qGcYrdDXh5YrV7/SKemNltrXrMs6PWtP9A6Hdjb36oMAIFmTEUFpKaC08n3+ZmZUFDA/S9gp7hSXQ0aTUDZjU6hAjpFEKI4paICVCrIyWkvwf3U1Gxui9JSUCq5+6vfFCpVm1MCSYEAMsZqBY0mAKEAgNMJ8fFcxQU5hbxepQKHg+fT0SlUQKcIgr5TePywu9fU4YDU1NaxrFoNMTFtQ9vUVP4tiicBZIxGA1VVARdQVQVaLTkCQp0CAFYraLU8DwI6hQroFEFQdorDASqV39GHzQbjelW1ZqVSCUollJa29U38vVwgfDNGyPdhMEB2NlBxCgSgFXQKFdApgqDplIoKiI/39W1UVJDex7VBmn2dNUEMW6jAK2McDtBooLo6+GJ0OqiooOMUACgthdRUv89Cp1ABnSIIak4hQx6vXYyKCoiIaJ0EKSgAs/nMhirpa8rBK2OCG/W4Ul0NavWOSicdp5CPpFb7/ujoFCrI1yk7VgR8/ZSwdIrDASzrZQ6F/EaTtZjSUte/hKSmHP4z5sbIRSg5Of99KY+aUwDAagW93sfkNzqFCnJ1Cnf7QdfweWpyuDpFowGW9SIUpbJ1fsRjvlbWTgl08dgHTmdD3/gJGhuFt3IlLw/Uaqio8PwLL6eYzVQ+BTqFFgFcN9+zk9J6Jf12CD+nVFWBwQATJtz0IMu2bs5t/2uRr1OKi0GnoyMUAACwGsxWJcWOyg0cDtDpIDvbbQcQL6dQkgE6hRZ8m+BNl7nmR5g5pbQUYmJAr29tgdwGUB6JJlOnBLEbxR9mM6zpmwN5eRTfsw2DAZRKyM7mRMJ37EPDB+gUWvBrgjdfknYHv7cOM6eYzcAwEBPTdrqVwcDzq5CpU3Q6rwMKIbSu+4jwzm0FpKZymwAn317xv3/zc6JgJaBTaMGrCXqdnfVrljBzCsFuh6FDYeTIgF4kR6eIk0etTnE4QK0WffrUZvvmVt1PfVxO7PPdP8rOFmIFdAoteDVBNvCL5kOYOoXw+uutcyj8kJ1Tbj5JhyJt+1Oqq0GtFro+7Q+VCk7stbftHszJaTuVQasFlnX3mlrd3jlZfkGn0IJHE7S7LO64rf6s8PW6MHYKADidkJnZNr3iE3k5xWoFtVqksm7a80bOCRRpbgUAfMynkPX+CRPcJ9QFTCGhU2gRVBO08hoBhbdTCBoN6PV+nyUvp6Smum2foYiXfbQCugZ+8T9Hq9eDSgV5eW27E7Xa4KqPTqFFsE3Q6n/40xGc4nCAVuu3zcjIKcXF7j/dVPHiFH677IOD17qPzQY5OaBSQXY22O3gdPI5RcsTdAotgm+Chbk/A6cAgMPhdxOqXJzidIJWK+och/fzfXQ6yMkRo7gA9tE6nWAwtF6SwmAAvT7Q87/RKbQIvgnuWNFB99EGjlycIuaoh9DuOYR5eaDTUS8u4L35TicUFwNAq18COWcSnUILXk2QdElYq/uDrM8xATpFGvR6WLnUCZmZoFbT3eHmia/zkjUa6leHEXS+j8nEZy6MA51CC17rPukeJ/gc3+JnYz6gU6RCr4c9Ew0BtZ+g8XOtA5alc7LiDYJxCnftWxK8GxM6hRb8mqDHCYR+hQLoFKmY8werPZ7vldME4scpZEKH3hZbPC+ZCrJ0SlCgU6TAaq2O0a5ZIoVQgM913gIccfgGnUIFdIogfnZO0Wrf05klyxj/TiEb4Sh1mtApVECnCOLn5RSDAfR6KTOG17Uj6Z0PjU6hQsdxynffgVLZdnsJaYJhpC6RZeH116WuacHLVodSVaXJZllQq2HsWInKnTz5pluGtBdVmuyKxw3Ci1Mq4fXXJarayJEwcqREZUmcMGo15OaK19DdEdEpxcWgULTe2lqyYBipS8zIgIkTJa3pe6lVh2O1b060kf/GxcHIkRIVnZwMvXr5f9qMZ+21CtWMZ+0Ci1MoYOJEiaqWmAiJiRKVJXHCxMXBq6+K19DdEXfsI+XN60kwjNQlWixQXi5RTfftdtr1OfUJGqvZwT2YkgIsK1FNjUZITOT1zGPzihtjVUcWVQgpLjYWysslqhppftKUJVnCkEhJ6ShjH3QK3TiaX3o5SXcqK88zY2ToFIsF9lfaG2NV+3Y7gy4OnUIl0CmCoqM65Wh+aXOnCK8/+7J1isUCNtZUm6IPujh0CpVApwiKDumUY/OKnar4w0ZzexkjW6dYLHDhsQnH5hUHVxw6hUqgUwRF2Dllf6Xd9xOOLKpojFUdKrL6yBg5O+VMBnsmgw2uOHQKlUCnCIqwc0pzpwgff7WxpusKpQ+hWGTvFIsFalP0NtYURHHoFCoRHk5heVySFp3CJ4BhvD5+oNzm0KbWpugPllT7zRiZO2XfbmdjrMqtR3ag3Ob3hegUKiF3p7C8TyNEp/AJr07ZX2mvT9AczS/lmTEyd4rFAufSs09MM7g+wmdMhE6hEjJ2ipXXpa050Cl8wtMpB8pttSn6c+nZ/DNG/k6pNlXVJ2jcHmyIU/se1qFTqIRcncJd7oCfUACdwi88nXLhsQk1aZkBZYz8nWLxNqvid54FnUIlZOoUcqk3/jchBHQKv3B1yoFy27n07EA3dISLUzxnVez6HM8tfK6BTqEScnQKdwN2Ppdi4kCn8AnOKQfKbXWJWrdJB54ZExZOsVjgyKIKhzaV21m7v9LeFBXj4/noFCohR6dwnRTX8H0xWkCn8AvilKP5pXWJWj5LIV4zJlycYrHAsXnFFx6b4Fb99gKdQiXk6BS3lWNOMX6vcY1O8RvksqkObWpwQrGEm1MsFqhN0XPnQF5XKF3Ph3QLdAqVkJ9TXC5G2zqZYnW/5LVX0Cl8AhhGyFl2ljB0imv4nqZFp1AJGTuFM4iLZXDPm8AU8d35d4sT0wxnMthTWXmuGgprpxxZVHE5SdfeX9EpVELGTnFZ9MF9tLRShKdTDpTbatIya9IyyVYx14GSrJxSm6KvS9RycWKawW8vzMcuFXQKlZCfU7wtJLMelvEEncIn/Drl+JsFwDA+rm8kK6ccKrIeNpq5OJee3dwpgswZNXeKOJeefSaDdTvb4Gh+qUOb6vXd0ClUQo5O4daSuUlZlsf+N3QKn2jvV/pQkfVcenZdotbzTBnPjJGPU3zEvt1OMnZzquLrEzSul25oT6zoFCohR6cA11UhUypW/50UQKfwC3KuIBnRkHBoU68rlA1x6hPTDIeNZr/rQeHiFNc4ml/qekWY9sSKTqESMnUKuPRWeO7QR6fwjMNGs6tTjuaX+lhe9ZoxYecUy43LONQlam2s6Wh+aWOsytOe6BQqIV+nBAo6RbKMCUenWG5MvnDTuugUkQKdIijQKaIG9bVk34FOoRLoFEGBThE10ClUAp0SJOgUyTIGnSI80Cm0ENEpmzfjfQilCBneh5BW4H0IqUTHuQ8h3i9ZmpDh/ZJpBd4vmUqo1TBrlngN3R1xxz5S3ryewIhYoXYJSU059HrperZmM2i1EpUFACoV2GwSlUWanzRInDBSZgigU6iAThEJdAoV0CmCQKeICjqFCuiUIEGnSAM6hQroFFqgUyiAThEJdAoV0CmCQKeICjqFCuiUmy7L5BY+rqSPTpEGdAoV0Cm0COz6KZ7h+zpv6BQJQKdQAZ1CC15NcMeKdpzi7xrX6BQJQKdQAZ1CC77XjnS/7YYd0v3dQgydIg3oFCqgU2jBzyke7iCjIR8DH0CnSAU6hQroFFoE2QQLc/0MfACdIhXoFCqgU2gRVBPkMfABdIpUoFOogE6hRTBNkM/AB9ApUoFOoQI6hRbBNEE+Ax9Ap0gFOoUK6BRaBN4E+Q18AJ0iFegUKqBTaBFwE+Q58AF0ilSgU6iATqFFwE2Q58AH0ClSgU6hAjqFFgE2Qd4DH0CnSAU6hQroFFoE1gT5D3wAnSIV6BQqoFNoEVgT5D/wAXSKVKBTqIBOoQVeP4UC6BSRQKdQAZ0iCHSKqKBTqIBOCRJ0ijSgU6iATqEFOoUC6BSRQKdQAZ0iCHSKqKBTqIBOCRKjERgGAwMj9PHYY+I1dHfE7adIefN6EgwjdYkWC5SXh6CmXKSkAMtKVJbRCImJ0lUtNhbKyyUqi9yuXJqyJE6YlJSO0k9Bp0iWMegU4YFOoQU6JfxSxDNj0CnCA51CC3RK+KWIZ8agU4QHOoUW6JTwSxHPjEGnCA90Ci0CcEphLt+7hRHQKZJlDDpFeKBTaBHYvU1b7/Lj9t92QKdIljHoFOGBTqEF33uGud11sPXOhP7uQ4hOkSZj0CnCA51CC15OYW+Md3bceIS7g/KO9l+FTpEsY9ApwgOdQotA+ikZkLii9RHsp4QwRTwzBp0iPNAptODlFK5XwnmE5TFNi06RLGPQKcIDnUILvus+rR2TDPcOiw/QKZJlDDpFeKBTaBHAWvJNvRUeWkGnSJYx6BThgU6hRWD9lEJ723xtor8L6KNTJMsYdIrwQKfQgpdTWgc+NzomrpvfcN1H+hTxzBh0ivBAp9CCh1Nu7HBz7ZWwPHbTolMkyxh0ivBAp9AiSKdwU7boFOlTxDNj0CnCA51Ci0D2vLlMyuL+lBCmiGfGoFOEBzqFFoHtT2ntldzoueD+lJCkiGfGoFOEBzqFFrzXkm94xHXnm2/QKZJlDDpFeKBTaIHXTwm/FPHMGHSK8ECn0AKdEn4p4pkx6BThgU6hBTol/FLEM2PQKcIDnUILdEr4pYhnxqBThAc6hRbolPBLEc+MQacID3QKLdAp4ZcinhmDThEe6BRaoFPCL0U8MwadIjzQKbRAp4RfinhmDDpFeKBTaIFOCb8U8cwYdIrwQKfQAp0SfinimTHoFOGBTqGFiE4xGqFzZ0hMlDQYRuoSExMhISEENeUiKgpUKonKiosDhUK6qnXuDAkJEpUVGwuxsRKVJXHCREXBpEniNXR3RHTK2bPwxhtgNksaf/qT1CWazVBZGYKacvH++/DZZxKVtWkTzJolXdXeeAMqKyUqa9kyMBgkKkvihHnnHdi7V7yG7o6ITkEQ5GcIOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJr8fxktJZcKG/BkAAAAAElFTkSuQmCC" alt="" />
 
 
 
 
 #include <cstdio>
#include <cstring>
#include <queue>
using namespace std; struct Point{
int x, y;
}s, t;
//骑士行走的方向
int dir[][] = {{, }, {, -}, {-, }, {-, -}, {, }, {-, }, {, -}, {-, -}}; bool inChess(Point a)
{
return a.x >= && a.y >= && a.x < && a.y < ;
} int bfs()
{
if(s.x == t.x && s.y == t.y)
return ;
queue <Point> q;
bool visit[][];
int dis[][];
memset(visit, , sizeof(visit));
q.push(s);
visit[s.x][s.y] = true;
dis[s.x][s.y] = ;
while(!q.empty()){
Point a = q.front();
q.pop();
for(int i = ; i < ; ++i){
Point b;
b.x = a.x + dir[i][];
b.y = a.y + dir[i][];
if(inChess(b) && !visit[b.x][b.y]){
visit[b.x][b.y] = true;
dis[b.x][b.y] = dis[a.x][a.y] + ;
q.push(b);
if(b.x == t.x && b.y == t.y)
return dis[b.x][b.y];
}
}
}
return -;
} int main()
{
char s1[], s2[];
while(~scanf("%s%s", s1, s2)){
s.x = s1[] - 'a';
s.y = s1[] - '';
t.x = s2[] - 'a';
t.y = s2[] - '';
printf("To get from %s to %s takes %d knight moves.\n", s1, s2, bfs());
}
return ;
}

POJ 2243 Knight Moves的更多相关文章

  1. POJ 2243 Knight Moves(BFS)

    POJ 2243 Knight Moves A friend of you is doing research on the Traveling Knight Problem (TKP) where ...

  2. POJ 1915 Knight Moves

    POJ 1915 Knight Moves Knight Moves   Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 29 ...

  3. OpenJudge/Poj 1915 Knight Moves

    1.链接地址: http://bailian.openjudge.cn/practice/1915 http://poj.org/problem?id=1915 2.题目: 总Time Limit: ...

  4. POJ 1915 Knight Moves(BFS+STL)

     Knight Moves Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 20913   Accepted: 9702 ...

  5. HDU 2243 Knight Moves

    题目: A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find th ...

  6. POJ2243 Knight Moves —— A*算法

    题目链接:http://poj.org/problem?id=2243 Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  7. 【POJ 2243】Knight Moves

    题 Description A friend of you is doing research on the Traveling Knight Problem (TKP) where you are ...

  8. POJ Knight Moves 2243 x

    Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13974   Accepted: 7797 Des ...

  9. POJ---2243 Knight Moves 使用A*算法的广度优先搜索

    题目链接:http://poj.org/problem?id=2243 启发式搜索:启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标.这样可以省 ...

随机推荐

  1. XSS前端防火墙

    前一段时间,在EtherDream大神的博客里看到关于XSS防火墙的一系列文章,觉得很有意思.刚好科创要做一个防火墙,就把XSS前端防火墙作为一个创新点,着手去实现了. 在实现过程中,由于各种原因,比 ...

  2. ng-blur失去焦点执行事件

    <label class="item item-input item-stacked-label"> <span class="input-label& ...

  3. 为什么要在<button>元素中添加type属性

    在HTML中<button> 标签定义一个按钮. <button type="button">Click Me!</button> 在 butt ...

  4. hdu 3449

    有依赖的背包,转化成01背包来做: #include<iostream> #include<cstdio> #include<cstring> #include&l ...

  5. tornado做简单socket服务器(TCP)

    http://blog.csdn.net/chenggong2dm/article/details/9041181 服务器端代码如下: #! /usr/bin/env python #coding=u ...

  6. MetadataType的使用

    MetadataType的使用,MVC的Model层数据验证指定要与数据模型类关联的元数据类 using System.ComponentModel.DataAnnotations; //指定要与数据 ...

  7. 【零基础学习iOS开发】【02-C语言】09-流程控制

    前言 1.默认的运行流程 默认情况下,程序的运行流程是这样的:运行程序后,系统会按书写顺序执行程序中的每一行代码.比如下面的程序 1 #include <stdio.h> 2 3 int ...

  8. 孟岩的c++ 的学习方法,这何尝有不是做人做事的方法呢?

    “(孟岩)我主张,在具备基础之后,学习任何新东西,都要抓住主线,突出重点.对 于关键理论的学习,要集中精力,速战速决.而旁枝末节和非本质性的知识内容,完全可 以留给实践去零敲碎打. “原因是这样的,任 ...

  9. PHP开篇之环境的搭建

    PHP开篇之环境的搭建 Wamp软件下载:http://www.wampserver.com/ 此时是2.5版本 下载下来一键安装. 安装有个主意 这里先不用管 或者smtp@qq.com 13643 ...

  10. JNDI学习总结(二)——Tomcat下使用C3P0配置JNDI数据源

    一.C3P0下载 C3P0下载地址:http://sourceforge.net/projects/c3p0/files/?source=navbar