[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- mysql常用数据类型的选择
时间戳可以用int来存储 ip地址的存储数据类型,可以使用INET_ATON 和INET_NTOA来配合bigint类型来代替varchar
- linux 常用命令 集锦
第一章 LINUX简介及安装 1一.LINUX介绍 1二.LINUX安装 2三.LINUX目录 2四.总结来说: 3第二章 常用命令及帐户管理 4一.linux命 ...
- wordpress如何删除没有文章的tags标签
wordpress站点除了可以按博客category分类外,还可以在写文章的时候适当添加tags标签(当然,if you are lazy,哈哈,可以安装auto tag插件来实现),发布的posts ...
- Data transfer object
Data transfer object (DTO) is a design pattern used to transfer data between software application su ...
- VC中不同类型DLL及区别
1. DLL的概念可以向程序提供一些函数.变量或类. 静态链接库与动态链接库的区别:(1)静态链接库与动态链接库都是共享代码的方式.静态链接库把最后的指令都包含在最终生成的EXE文件中了:动态链接库不 ...
- 正确使用STL-MAP中Erase函数
一切尽在代码中. #include <iostream> #include <map> #include <string> using namespace std ...
- PreparedStatement是如何大幅度提高性能的
本文讲述了如何正确的使用prepared statements.为什么它可以让你的应用程序运行的更快,和同样的让数据库操作变的更快. 为什么Prepared Statements非常重要?如何正确的 ...
- DVB系统中PCR的生成和PCR校正
http://blog.csdn.net/chenliangming/article/details/3616720 引自<广播电视信息>2008年1月 从数字电视前端系统功能上来讲,传统 ...
- H264码流解析及NALU
ffmpeg 从mp4上提取H264的nalu http://blog.csdn.net/gavinr/article/details/7183499 639 /* bitstream fil ...
- PHP集成支付宝快速实现充值功能
http://blog.lixiphp.com/php-alipay-fast-chongzhi/#axzz2tOypIl4r