Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. random note

    今天才慢慢意识到,什么才是学习,(以思考解决问题为驱动),埋头刷分只是方法,不是目的和原动力. 既然准备读研,就要慢慢去了解研究生的生活学习方式是什么样的,涉及到哪些方面. 读研之前要选好方向,但是现 ...

  2. 【BZOJ 2440】[中山市选2011]完全平方数

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  3. iOS应用中URL地址如何重定向-b

    就用一个很简单的例子 http://www.google.com谷歌的首页 都知道现在浏览器中打开google.com的话事实上会变成http://www.google.com.hk 网址被重定向了 ...

  4. GIS的数学基础

    在这里需要说明一点,任何领域的概念.技术都有其特定的适用范围,有其解决的问题,有其发展的历史,所以,抛开应用环境.范围来谈技术就像是没有根系的枝丫,枝丫再粗壮也只是一根木头而已. 那接下来我们来聊聊什 ...

  5. 读书笔记 (二) ———Fundamentals of Multiagent Systems with NetLogo Examples by Prof. Jose M Vidal

    chapter 2 分布式约束1 分布式约束满足 1.1 过滤算法 1.2 基于归结的调和算法 consistency 1.3 异步回溯 1.4 异步弱承诺? 1.5 分布式突破?2 分布式受限优化 ...

  6. 1045: [HAOI2008] 糖果传递 - BZOJ

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1.Input 小朋友个数n 下面n行 aiOutput 求使所有人获得均等糖果的 ...

  7. Samza的ApplicationMaster

    当Samza ApplicationMaster启动时,它做以下的事情: 通过STREAMING_CONFIG环境变量从YARN获取配置信息(configuration) 在随机端口上 启动一个JMX ...

  8. jquery类选择器无法取得对象问题原因

    <html> <script type="text/javascript" src="jquery-1.9.1.js"></scr ...

  9. 正确使用STL-MAP中Erase函数

    一切尽在代码中. #include <iostream> #include <map> #include <string> using namespace std ...

  10. MysqlHelper类

    连接方式:server=localhost;port=3306;userid=root;password=123456789;database=mysql;persist security info= ...