Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【BZOJ1500】[NOI2005]维修数列

    Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一 ...

  2. 1200: [HNOI2005]木梳 - BZOJ

    Description   Input 第一行为整数L,其中4<=L<=100000,且有50%的数据满足L<=104,表示木板下侧直线段的长.第二行为L个正整数A1,A2,…,AL ...

  3. 在WIN32 DLL中使用MFC库遇到的问题

    今天写了一个DLL,DLL中用到的一个类里用到的MSXML的COM组件,所以在DLL中要包含afx.h头文件,也就不可避免的要用到MFC的类库了,但在编译时出现了错误:mfcs42d.lib(dllm ...

  4. CSU1327+贪心+模拟

    题意简单,中文题目 方法:对于一个数 从左往右找相同的数 ,有就改变靠右的,同时把该数的右边全置0 注意!!!!n<0!!! /* */ #include<algorithm> #i ...

  5. poj 1487 Single-Player Games

    主要考察表达式的解析和高斯消元!!! #include<iostream> #include<stdio.h> #include<algorithm> #inclu ...

  6. hadoop No FileSystem for scheme: hdfs

    http://stackoverflow.com/questions/17265002/hadoop-no-filesystem-for-scheme-file This is a typical c ...

  7. struts2 权限拦截器 拦截没有登陆的请求

    假设有这样的登陆: ActionContext.getContext().getSession().put("UserMsg", userMsg); 则可以这样判断是否登陆: im ...

  8. CKEditor在线编辑器增加一个自定义插件

    CKEditor是一个非常优秀的在线编辑器,它的前身就是FCKEditor,CKEditor据官方说是重写了内核的,但功能和性能比FCKEditor更为强大和优越.记得07年的时候第一次接触FCKEd ...

  9. 【BZOJ 2300】 2300: [HAOI2011]防线修建 (动态凸包+set)

    2300: [HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上 ...

  10. Android工具:延展图片NinePatch

    NinePatch能够对.png图片进行处理,生成一个.9.png格式的图片,图像拉伸操作时,图片就会有失真,而.9.png是Android里所支持的一种特殊的图片格式,可以实现部分拉伸. 制作图片方 ...