[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- ExtJs 4.2 treePanel 点击树节点 传送参数到后台(多个参数)
//***********************************************左边树开始********************************************** ...
- To get TaskID's Integer ID value from the GUID in SharePoint workflow
list.GetItemByUniqueId(guid).ID int itemID = spList.Items[new Guid("")].ID;
- CSS3圆角气泡框,评论对话框
<title>CSS3圆角气泡框,评论对话框</title> <style> body { ; ; font:1em/1.4 Cambria, Georgia, s ...
- 1046: [HAOI2007]上升序列 - BZOJ
Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...
- js检测对象的类型
在JavaScript中,想要判断某个对象值属于哪种内置类型,最靠谱的做法就是通过Object.prototype.toString方法. 示例: var array=[1,2,3]; Object. ...
- 汇编Ring 3下实现 HOOK API
[文章标题]汇编ring3下实现HOOK API [文章作者]nohacks(非安全,hacker0058) [作者主页]hacker0058.ys168.com [文章出处]看雪论坛(bbs.ped ...
- uva 11039
水题 排序 判符号 #include <cstdio> #include <cstring> #include <algorithm> using namespa ...
- Maven打包时囊括本地依赖的jar包
在开发中,偶尔会遇到一个问题:某些比较冷门的包,maven服务器上没有,而我们又必须用,通常情况下会在项目中建立一个lib文件夹.将这些包copy进去并加入buildpath,开发就可以继续了,如下图 ...
- dtp--eclipse的安装数据源管理的一个插件的安装方法
1. 下载eclipse dtp 插件 http://download.eclipse.org/datatools/updates/1.11 help——>install new softwa ...
- xcode 把cocos2d-x 以源码的形式包含进自己的项目适合, 性能分析问题的错误
性能分析:出现如下错误: xcode profile Variable has incomplete type class “CC_DLL” 解决办法:在 xcode的Build Setting ...