[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- WP8.1和Win8.1的不同之处
本文仅是个人见解,如有不足或错误之处欢迎批评指正~ 1.Toast: 创建Toast代码差不多但实现机制及管理上不一样 2.ApplicationData: WP8.1多了一个LocalCacheFo ...
- 0ffice365 Calendar API
Calendar REST API in Office 365 APIs Preview http://msdn.microsoft.com/EN-US/library/office/dn792114 ...
- 1483:[HNOI]2009 梦幻布丁 - BZOJ
Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input 第 ...
- [Jquery] js验证手机号
function checkIdPhone(id,idErr){ var reg0=/^(13[0-9]|15[012356789]|18[01235,idErr6789]|14[57]|17[0]) ...
- [转载]MongoDB的$inc修改器
MongoDB的$inc修改器相当于编程语言中的 “+=”“$inc”只能用于操作数值类型的数据,包括整数.长整数和双精度浮点数,用于其他类型的数据会导致操作失败. >db.users.find ...
- [转载]mvc使用JsonResult返回Json数据
controller 中定义以下方法: public JsonResult UpdateSingle(int id, string actionName, string actionValue) { ...
- hdu 3646
DP 状态转移方程还是比较容易想到 关键问题是当前要攻击的怪兽的血量 dp[i][j] = max(dp[i-1][j]+第i只鸟不使用double可杀死的怪兽数, dp[i-1][j-1]+第i ...
- Discuz云平台站点信息同步失败,An unknown error occurred. May be DNS Error.
站点信息同步失败 An unknown error occurred. May be DNS Error. (ERRCODE:1) 经过Discuz教程网(http://www.1314study.c ...
- Android支付接入(四):联通VAC计费
原地址:http://blog.csdn.net/simdanfeg/article/details/9012031 注意事项: 1.联通支付是不需要自己标识软硬计费点的,当平台申请计费点的时候会提交 ...
- 跨平台Unicode与UTF8互转代码
参考来源:http://blog.csdn.net/flying8127/article/details/1598521 在原来原基础上,将代码整理,并加强安全性. 并按照WindowsAPI设计, ...