[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- aaaa
http://www.host.com http://www.host.com http://sz.weixun.com/scenery/details-3.htm http://sz.weixun. ...
- WdatePicker 设置开始时间和结束时间
开始时间: <input type="text" placeholder=" -请选择- " readonly="readonly" ...
- NIO的Selector
参考自 Java NIO系列教程(六) Selector Java-NIO-Selector java.nio.channels.Selector NIO新功能Top 10(下) 出发点: 如何管理多 ...
- hdu 4577 X-Boxes 大数
java水过…… 代码如下: import java.math.*; import java.util.*; public class Main { public static void main(S ...
- java I/O Stream 代码学习总结
一. InputStream 类学习介绍 mark方法 public void mark(int readlimit) 在此输入流中标记当前的位置.对 reset 方法的后续调用会在最后标记的位置重新 ...
- [itint5]完全二叉树节点个数的统计
http://www.itint5.com/oj/#4 这题是利用完全二叉树的性质计算节点数目.那么是通过比较左右子树的最左结点的高度来看那边是满的,然后递归计算. //使用getLeftChildN ...
- js常用函数(不断添加中。。。)
/************************************************* Function: getColor Description: 根据输入的数字返回一个颜色值 In ...
- Random Integer Generator
先占坑.以后再修改 昨天遇到一道题, Given int Rand(1) = 0或者 1- uniformly distributed, write a function to implemen ...
- java遍历树(深度遍历和广度遍历
java遍历树如现有以下一颗树:A B B1 B11 B2 B22 C C ...
- 如何理解IoC/DI
IoC:Inversion of Control,控制反转DI:Dependency Injection,依赖注入 要理解上面两个概念,就必须搞清楚如下的问题: 参与者都有谁?依赖:谁依赖于谁?为什么 ...