Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. ExtJs 4.2 treePanel 点击树节点 传送参数到后台(多个参数)

    //***********************************************左边树开始********************************************** ...

  2. To get TaskID's Integer ID value from the GUID in SharePoint workflow

    list.GetItemByUniqueId(guid).ID int itemID = spList.Items[new Guid("")].ID;

  3. CSS3圆角气泡框,评论对话框

    <title>CSS3圆角气泡框,评论对话框</title> <style> body { ; ; font:1em/1.4 Cambria, Georgia, s ...

  4. 1046: [HAOI2007]上升序列 - BZOJ

    Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...

  5. js检测对象的类型

    在JavaScript中,想要判断某个对象值属于哪种内置类型,最靠谱的做法就是通过Object.prototype.toString方法. 示例: var array=[1,2,3]; Object. ...

  6. 汇编Ring 3下实现 HOOK API

    [文章标题]汇编ring3下实现HOOK API [文章作者]nohacks(非安全,hacker0058) [作者主页]hacker0058.ys168.com [文章出处]看雪论坛(bbs.ped ...

  7. uva 11039

    水题  排序 判符号 #include <cstdio> #include <cstring> #include <algorithm> using namespa ...

  8. Maven打包时囊括本地依赖的jar包

    在开发中,偶尔会遇到一个问题:某些比较冷门的包,maven服务器上没有,而我们又必须用,通常情况下会在项目中建立一个lib文件夹.将这些包copy进去并加入buildpath,开发就可以继续了,如下图 ...

  9. dtp--eclipse的安装数据源管理的一个插件的安装方法

    1.  下载eclipse dtp 插件 http://download.eclipse.org/datatools/updates/1.11 help——>install new softwa ...

  10. xcode 把cocos2d-x 以源码的形式包含进自己的项目适合, 性能分析问题的错误

    性能分析:出现如下错误: xcode profile  Variable has incomplete type   class “CC_DLL” 解决办法:在 xcode的Build Setting ...