用cudamat做矩阵运算的GPU加速
1. cudamat简介
cudamat是一个python语言下,利用NVIDIA的cuda sdk 进行矩阵运算加速的库。对于不熟悉cuda编程的程序员来说,这是一个非常方便的GPU加速方案。很多工程和项目中都使用了cudamat,例如gnumpy,deepnet等。
2. 安装
cudamat的github地址如下:https://github.com/cudamat/cudamat。
下载完成后,运行命令 python setup.py install来进行安装。
windows下安装需要将“cl.exe”加入path之中,另外会提示你安装vc的python编译器,依照提示下载安装即可。
3. 基本矩阵运算
import numpy as np
import cudamat as cm
cm.cublas_init()
# create two random matrices and copy them to the GPU
a = cm.CUDAMatrix(np.random.rand(32, 256))
b = cm.CUDAMatrix(np.random.rand(256, 32))
# perform calculations on the GPU
c = cm.dot(a, b)
d = c.sum(axis = 0)
# copy d back to the host (CPU) and print
print(d.asarray())
如以上代码所示,cudamat的基本使用方法是利用cm.CUDAMatrix(A)来讲矩阵A转换成GPU里的矩阵,进而进行各种运算。cudamat提供了多种矩阵运算的接口,可参考文档:http://www.cs.toronto.edu/~vmnih/docs/cudamat_tr.pdf。或者可阅读源代码里的cudamat/cudamat.py或test/test_cudamat.py来查看其各种接口。
4. where等其他运算
接下来介绍一个矩阵里的where运算,示例代码如下:
def func(temp,threshold):
temp_cpu1=temp.asarray()
res_d = cm.empty(temp.shape)
temp.greater_than(threshold, res_d)
temp.free_device_memory()
x=np.ones_like(temp_cpu1)
z = np.zeros_like(temp_cpu1)
x_d=cm.CUDAMatrix(x)
z_d = cm.CUDAMatrix(z)
# > threhold ? 1 : 0
cm.where(res_d, x_d, z_d)
temp_cpu=res_d.asarray()
return temp_cpu
如代码所示,该函数的输入是一个CUDAMatrix temp,一个double值threshold。通过great_than函数,可将temp与threshold进行比较,比较的结果放入res_d中,x_d,z_d是与temp同样大小的1,0矩阵,最后通过where操作,即可将res_d中的正值设为1,负值设为0,最后得到的结果也就是将矩阵temp中大于threshold的值设为1,否则设为0
5. 大型矩阵相乘的分块加速算法
对于非常大型的矩阵相乘,如果显存不足以放下矩阵的话,可以尝试分块送入GPU进行计算,再将得到的结果进行汇总。
作者yunhe
谢谢阅读!转载请注明出处。
用cudamat做矩阵运算的GPU加速的更多相关文章
- mxnet:结合R与GPU加速深度学习
转载于统计之都,http://cos.name/tag/dmlc/,作者陈天奇 ------------------------------------------------------------ ...
- GPU 加速NLP任务(Theano+CUDA)
之前学习了CNN的相关知识,提到Yoon Kim(2014)的论文,利用CNN进行文本分类,虽然该CNN网络结构简单效果可观,但论文没有给出具体训练时间,这便值得进一步探讨. Yoon Kim代码:h ...
- 深度学习“引擎”之争:GPU加速还是专属神经网络芯片?
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引 ...
- GPU加速有坑?
大多数人都知道有动画的地方可以使用GPU来加速页面渲染. 例如,做优化的时候,将使用left和top属性的动画修改成使用transform属性的CSS动画.或者听到别人教你使用transform:tr ...
- 记录一次Python下Tensorflow安装过程,1.7带GPU加速版本
最近由于论文需要,急需搭建Tensorflow环境,16年底当时Tensorflow版本号还没有过1,我曾按照手册搭建过CPU版本.目前,1.7算是比较新的版本了(也可以从源码编译1.8版本的Tens ...
- Windows 10下安装配置Caffe并支持GPU加速(修改版)
基本环境 建议严格按照版本来 - Windows 10 - Visual Studio 2013 - Matlab R2016b - Anaconda - CUDA 8.0.44 - cuDNN v4 ...
- CSS动画的性能分析和浏览器GPU加速
此文已由作者袁申授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 有数的数据大屏可以在一块屏幕上展示若干张不同的图表,以炫酷的方式展示各种业务数据.其中有些图表使用CSS实现了 ...
- Python笔记_第四篇_高阶编程_进程、线程、协程_5.GPU加速
Numba:高性能计算的高生产率 在这篇文章中,笔者将向你介绍一个来自Anaconda的Python编译器Numba,它可以在CUDA-capable GPU或多核cpu上编译Python代码.Pyt ...
- 0704-使用GPU加速_cuda
0704-使用GPU加速_cuda 目录 一.CPU 和 GPU 数据相互转换 二.使用 GPU 的注意事项 三.设置默认 GPU 四.GPU 之间的切换 pytorch完整教程目录:https:// ...
随机推荐
- MySql 日期格式化函数date_format()
mysql> select date_format(now(),'%Y'); +-------------------------+ | date_format(now(),'%Y') | +- ...
- Java 完美判断中文字符的方法
Java判断一个字符串是否有中文一般情况是利用Unicode编码(CJK统一汉字的编码区间:0x4e00–0x9fbb)的正则来做判断,但是其实这个区间来判断中文不是非常精确,因为有些中文的标点符号比 ...
- 0c-40-ARC下多对象内存管理
1个人拥有1条狗. 问题1:人拥有狗作为成员变量,此时使用weak,释放过程是什么样? Person *p = [Person new]; Dog *d = [Dog new]; //设置人拥有dog ...
- C++ Qt 访问权限总结
总结:C++的访问修饰符的作用是以类为单位,而不是以对象为单位. 通俗的讲,同类的对象间可以“互相访问”对方的数据成员,只不过访问途径不是直接访问. 步骤是:通过一个对象调用其public成员函数,此 ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- 如何在Fedora或CentOS上使用Samba共享
如今,无论在家里或者是办公场所,不同的电脑之间共享文件夹已不是什么新鲜事了.在这种趋势下,现代操作系统通过网络文件系统的方式使得电脑间数据的交换变得简单而透明.如果您工作的环境中既有微软的Window ...
- Golang学习 - errors 包
------------------------------------------------------------ Go 语言使用 error 类型来返回函数执行过程中遇到的错误,如果返回的 e ...
- shell 学习笔记
<Linux命令行与shell脚本编程大全>笔记 wkss 其他:http://www.cnblogs.com/pengdonglin137/p/3528303.html 一.基本命令 ...
- java 访问修饰符
此题考察修饰符,函数定义等,故从网上搜罗了下相关资料,总结如下: 类.方法.成员变量和局部变量的可用修饰符 修饰符 类 成员访求 构造方法 成员变量 局部变量 abstract(抽象的) √ √ - ...
- spark1.2.0编译
spark 有三种编译方式:SBT.MAVEN.make-distribution.sh.SBT.MAVEN两种方式打出来的包比较大,不适合部署使用.因此我们通常使用第三种方式打包. ./make-d ...