Sklearn 速查
版权所有,转帖注明出处
章节
Scikit-learn是一个开源Python库,它使用统一的接口实现了一系列机器学习、预处理、交叉验证和可视化算法。
一个基本例子
from sklearn import neighbors, datasets, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
X, y = iris.data[:, :2], iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy_score(y_test, y_pred)
加载数据
数据类型可以是NumPy数组、SciPy稀疏矩阵,或者其他可转换为数组的类型,如panda DataFrame等。
import numpy as np
X = np.random.random((10,5))
y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
X[X < 0.7] = 0
预处理数据
标准化/Standardization
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X_train)
standardized_X = scaler.transform(X_train)
standardized_X_test = scaler.transform(X_test)
归一化/Normalization
from sklearn.preprocessing import Normalizer
scaler = Normalizer().fit(X_train)
normalized_X = scaler.transform(X_train)
normalized_X_test = scaler.transform(X_test)
二值化/Binarization
from sklearn.preprocessing import Binarizer
binarizer = Binarizer(threshold=0.0).fit(X)
binary_X = binarizer.transform(X)
类别特征编码
from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()
y = enc.fit_transform(y)
缺失值估算
>>>from sklearn.preprocessing import Imputer
>>>imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>>imp.fit_transform(X_train)
生成多项式特征
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(5)
oly.fit_transform(X)
训练与测试数据分组
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0)
创建模型
有监督学习模型
线性回归
from sklearn.linear_model import LinearRegression
lr = LinearRegression(normalize=True)
支持向量机(SVM)
from sklearn.svm import SVC
svc = SVC(kernel='linear')
朴素贝叶斯
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
KNN
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
无监督学习模型
主成分分析(PCA)
from sklearn.decomposition import PCA
pca = PCA(n_components=0.95)
k均值/K Means
from sklearn.cluster import KMeans
k_means = KMeans(n_clusters=3, random_state=0)
模型拟合
有监督学习
lr.fit(X, y)
knn.fit(X_train, y_train)
svc.fit(X_train, y_train)
无监督学习
k_means.fit(X_train)
pca_model = pca.fit_transform(X_train)
模型预测
有监督学习
y_pred = svc.predict(np.random.random((2,5)))
y_pred = lr.predict(X_test)
y_pred = knn.predict_proba(X_test))
无监督学习
y_pred = k_means.predict(X_test)
评估模型性能
分类指标
准确度
knn.score(X_test, y_test)
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
分类报告
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred)))
混淆矩阵
from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, y_pred)))
回归指标
平均绝对误差
from sklearn.metrics import mean_absolute_error
y_true = [3, -0.5, 2])
mean_absolute_error(y_true, y_pred))
均方差
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred))
$R^2$分数
from sklearn.metrics import r2_score
r2_score(y_true, y_pred))
聚类指标
调整兰德系数
from sklearn.metrics import adjusted_rand_score
adjusted_rand_score(y_true, y_pred))
同质性/Homogeneity
from sklearn.metrics import homogeneity_score
homogeneity_score(y_true, y_pred))
调和平均指标/V-measure
from sklearn.metrics import v_measure_score
metrics.v_measure_score(y_true, y_pred))
交叉验证
print(cross_val_score(knn, X_train, y_train, cv=4))
print(cross_val_score(lr, X, y, cv=2))
模型调优
网格搜索
from sklearn.grid_search import GridSearchCV
params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]}
grid = GridSearchCV(estimator=knn,param_grid=params)
grid.fit(X_train, y_train)
print(grid.best_score_)
print(grid.best_estimator_.n_neighbors)
随机参数优化
from sklearn.grid_search import RandomizedSearchCV
params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]}
rsearch = RandomizedSearchCV(estimator=knn,
param_distributions=params,
cv=4,
n_iter=8,
random_state=5)
rsearch.fit(X_train, y_train)
print(rsearch.best_score_)
Sklearn 速查的更多相关文章
- 机器学习算法 Python&R 速查表
sklearn实战-乳腺癌细胞数据挖掘( 博主亲自录制) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...
- 常用的14种HTTP状态码速查手册
分类 1xx \> Information(信息) // 接收的请求正在处理 2xx \> Success(成功) // 请求正常处理完毕 3xx \> Redirection(重定 ...
- jQuery 常用速查
jQuery 速查 基础 $("css 选择器") 选择元素,创建jquery对象 $("html字符串") 创建jquery对象 $(callback) $( ...
- 简明 Git 命令速查表(中文版)
原文引用地址:https://github.com/flyhigher139/Git-Cheat-Sheet/blob/master/Git%20Cheat%20Sheet-Zh.md在Github上 ...
- 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册
<zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...
- .htaccess下Flags速查表
Flags是可选参数,当有多个标志同时出现时,彼此间以逗号分隔. 速查表: RewirteRule 标记 含义 描述 R Redirect 发出一个HTTP重定向 F Forbidden 禁止对URL ...
- IL指令速查
名称 说明 Add 将两个值相加并将结果推送到计算堆栈上. Add.Ovf 将两个整数相加,执行溢出检查,并且将结果推送到计算堆栈上. Add.Ovf.Un 将两个无符号整数值相加,执行溢出检查,并且 ...
- Linux命令速查手册,超详细Linux命令教程
一.常用命令速查 ls cd pwd cat more less tail head cp scp mv mkdir rmdir touch rm ps kill top free clear tre ...
- 25个有用的和方便的 WordPress 速查手册
如果你是 WordPress 开发人员,下载一些方便的 WordPress 备忘单可以在你需要的时候快速查找.下面这个列表,我们已经列出了25个有用的和方便的 WordPress 速查手册,赶紧收藏吧 ...
随机推荐
- Python 数组
使用之前要先导入函数库 import numpy as np 数组名=np.zeros(数组大小,数据类型) 初始化为0值,这里的数据类型只能是数值类型,字符类型不能用 一.一维数组 impo ...
- C 语言入门第五章--循环结构和选择结构
C语言中有三大结构,分别是顺序结构.选择结构和循环结构: 逻辑运算: 与运算: && 或运算:|| 非运算:! ==== #include<stdio.h> int mai ...
- Pytorch【直播】2019 年县域农业大脑AI挑战赛---初级准备(一)切图
比赛地址:https://tianchi.aliyun.com/competition/entrance/231717/introduction 这次比赛给的图非常大5万x5万,在训练之前必须要进行数 ...
- 新闻网大数据实时分析可视化系统项目——3、Hadoop2.X分布式集群部署
(一)hadoop2.x版本下载及安装 Hadoop 版本选择目前主要基于三个厂商(国外)如下所示: 1.基于Apache厂商的最原始的hadoop版本, 所有发行版均基于这个版本进行改进. 2.基于 ...
- storm的JavaAPI运行报错
报错:java.lang.NoClassDefFoundError: org/apache/storm/topology/IRichSpout 原因:idea的bug:本地运行时设置scope为pro ...
- 使用input选择本地图片,并且实现预览功能
1.使用input标签选择本地图片文件 用一个盒子来存放预览的图片 2.JS实现预览 首先添加一个input change事件,再用到 URL.createObjectURL() 方法 用来创建 UR ...
- 报错信息 Context []startup failed due to previous errors
文章转自:http://blog.sina.com.cn/s/blog_49b4a1f10100q93e.html 框架搭建好后,启动服务器出现如下的信息: log4j:WARN No appende ...
- 使用Spring Cloud Gateway保护反应式微服务(二)
抽丝剥茧,细说架构那些事——[优锐课] 接着上篇文章:使用Spring Cloud Gateway保护反应式微服务(一) 我们继续~ 将Spring Cloud Gateway与反应式微服务一起使用 ...
- 嵊州普及Day3T2
题意:对于n数列的全排列,有多少种可能,是每项前缀和不能整除3.输出可能性%1000000000037. 思路:全部模三,剩余1.2.0,1.2可这样排:1.1.2.1.2.1.2.……2或2.2.1 ...
- QQ企业通----类库的设计----UDPSocket组件等
知识点: IPEndPoint 将网络端点表示为 IP 地址和端口号. UdpClient 提供用户数据报 (UDP) 网络服务. UdpClient对象.Close 关闭 UDP 连接. ...