tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo。
更多教程:http://www.tensorflownews.com
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import tensorflow as tf
from PIL import Image
import numpy
img = Image.open('szu.jpg')
img_ndarray = numpy.asarray(img, dtype='float32')
print(img_ndarray.shape)
img_ndarray=img_ndarray[:,:,0]
plt.figure()
plt.subplot(221)
plt.imshow(img_ndarray)
w=[[-1.0,-1.0,-1.0],
[-1.0,9.0,-1.0],
[-1.0,-1.0,-1.0]]
with tf.Session() as sess:
img_ndarray=tf.reshape(img_ndarray,[1,183,276,1])
w=tf.reshape(w,[3,3,1,1])
img_cov=tf.nn.conv2d(img_ndarray, w, strides=[1, 1, 1, 1], padding='SAME')
image_data=sess.run(img_cov)
print(image_data.shape)
plt.subplot(222)
plt.imshow(image_data[0,:,:,0])
img_pool=tf.nn.max_pool(img_ndarray, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
image_data = sess.run(img_pool)
plt.subplot(223)
plt.imshow(image_data[0, :, :, 0])
plt.subplot(224)
img_pool = tf.nn.max_pool(img_ndarray, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1],
padding='SAME')
image_data = sess.run(img_pool)
plt.imshow(image_data[0, :, :, 0])
plt.show()
效果图片
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图的更多相关文章
- Python3 卷积神经网络卷积层,池化层,全连接层前馈实现
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...
- CNN卷积神经网络的卷积层、池化层的输出维度计算公式
卷积层Conv的输入:高为h.宽为w,卷积核的长宽均为kernel,填充为pad,步长为Stride(长宽可不同,分别计算即可),则卷积层的输出维度为: 其中上开下闭开中括号表示向下取整. MaxPo ...
- Keras深度神经网络算法模型构建【输入层、卷积层、池化层】
一.输入层 1.用途 构建深度神经网络输入层,确定输入数据的类型和样式. 2.应用代码 input_data = Input(name='the_input', shape=(1600, 200, 1 ...
- 『TensorFlow』卷积层、池化层详解
一.前向计算和反向传播数学过程讲解
- CNN-卷积层和池化层学习
卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例
import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...
- [DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点
4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似 ...
- deeplearning.ai 卷积神经网络 Week 1 卷积神经网络 听课笔记
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...
- deeplearning.ai 卷积神经网络 Week 2 卷积神经网络经典架构
1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based lea ...
随机推荐
- Git的安装与TortoiseGit的安装和汉化
下载Git 进入https://git-scm.com/downloads 可以看到如下界面 因为我是windows系统,选择windows即可. 有的朋友因为网络慢的一些原因不能很快下载下来,可以进 ...
- C++扬帆远航——3(打印图形)
/* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:tuxing.cpp * 作者:常轩 * 完成日期:2016年3 ...
- Flutter跨平台框架的使用-iOS最新版
科技引领我们前行 [前言] 1:先简单的介绍下Flutter,它是一款跨平台应用SDK,高性能跨平台实现方案(暂时讨论iOS和Android), 它不同于RN,少了像RN的JS中间桥接层,所以它的性能 ...
- Reids(4)——神奇的HyperLoglog解决统计问题
一.HyperLogLog 简介 HyperLogLog 是最早由 Flajolet 及其同事在 2007 年提出的一种 估算基数的近似最优算法.但跟原版论文不同的是,好像很多书包括 Redis 作者 ...
- SpringBoot入门系列(二)如何返回统一的数据格式
前面介绍了Spring Boot的优点,然后介绍了如何快速创建Spring Boot 项目.不清楚的朋友可以看看之前的文章:https://www.cnblogs.com/zhangweizhong/ ...
- Angular 从入坑到挖坑 - 表单控件概览
一.Overview angular 入坑记录的笔记第三篇,介绍 angular 中表单控件的相关概念,了解如何在 angular 中创建一个表单,以及如何针对表单控件进行数据校验. 对应官方文档地址 ...
- 总结:利用asp.net core日志进行生产环境下的错误排查(asp.net core version 2.2,用IIS做服务器)
概述 调试asp.net core程序时,在输出窗口中,在输出来源选择“调试”或“xxx-ASP.NET Core Web服务器”时,可以看到类似“info:Microsoft.AspNetCore. ...
- java 发送邮件详细讲解
一.JavaMail概述: JavaMail是由Sun定义的一套收发电子邮件的API,不同的厂商可以提供自己的实现类.但它并没有包含在JDK中,而是作为JavaEE的一部分. 厂商所提供 ...
- 盘点Mac上搭建本地WebServer的几种方式
第一种: 通过Nginx搭建本地WebServer 安装nginx brew install nginx 安装完后在终端输入nginx指令,启动nginx查看效果 确定安装好之后,在根目录创建一个文件 ...
- 判断某个点是否在某个view上
-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { UITouch *touch = [touches anyObjec ...