题目

Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查。他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T。这些城镇之间通过R条道路 (1 <= R <= 50,000,编号为1到R) 和P条航线 (1 <= P <= 50,000,编号为1到P) 连接。每条道路i或者航线i连接城镇Ai (1 <= Ai <= T)到Bi (1 <= Bi <= T),花费为Ci。对于道路,0 <= Ci <= 10,000;然而航线的花费很神奇,花费Ci可能是负数(-10,000 <= Ci <= 10,000)。道路是双向的,可以从Ai到Bi,也可以从Bi到Ai,花费都是Ci。然而航线与之不同,只可以从Ai到Bi。事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台 了一些政策保证:如果有一条航线可以从Ai到Bi,那么保证不可能通过一些道路和航线从Bi回到A_i。由于FJ的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。他想找到从发送中心城镇S(1 <= S <= T) 把奶牛送到每个城镇的最便宜的方案,或者知道这是不可能的。

Input

  • 第1行:四个空格隔开的整数: T, R, P, and S * 第2到R+1行:三个空格隔开的整数(表示一条道路):Ai, Bi 和 Ci * 第R+2到R+P+1行:三个空格隔开的整数(表示一条航线):Ai, Bi 和 Ci

Output

  • 第1到T行:从S到达城镇i的最小花费,如果不存在输出"NO PATH"。

Sample Input

6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10

样例输入解释:

一共六个城镇。在1-2,3-4,5-6之间有道路,花费分别是5,5,10。同时有三条航线:3->5, 4->6和1->3,花费分别是-100,-100,-10。FJ的中心城镇在城镇4。

Sample Output

NO PATH
NO PATH
5
0
-95
-100

样例输出解释:

FJ的奶牛从4号城镇开始,可以通过道路到达3号城镇。然后他们会通过航线达到5和6号城镇。 但是不可能到达1和2号城镇。

分析

第一眼看到有负边权,首先想到的就是spfa,但是就tle了。 但是又因为有负边权,所以dij又没办法用,这可怎么办呢。

让我们仔细分析一下,题中有个意思就是负权的边不会出现环,所以就可以缩点,使整个图变成有向无环图,然后在进行dij,利用拓补排序更新答案。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
const int INF = 0x3f3f3f3f;
using namespace std;
const int maxn=;
int t,r,p,s,headd[maxn],tot=,cnt;
struct Node{
int to,next,val;
}b[maxn];
void add(int aa,int bb,int cc){
b[tot].to=bb;
b[tot].val=cc;
b[tot].next=headd[aa];
headd[aa]=tot++;
}
bool vis[maxn];
int shuyu[maxn],dis[maxn];
vector<int> jl[maxn];
void dfs(int now){
shuyu[now]=cnt,vis[now]=,jl[cnt].push_back(now);
for(int i=headd[now];i!=-;i=b[i].next){
int u=b[i].to;
if(vis[u])continue;
dfs(u);
}
}
struct jie{
int num,jz;
jie(int aa=,int bb=){
num=aa,jz=bb;
}
bool operator < (const jie& A) const {
return jz>A.jz;
}
};
int ru[maxn];
queue<int> q;
priority_queue<jie> Q;
void dij(){
dis[s]=;
while(!q.empty()) {
int xx=q.front();
q.pop();
for(int i=;i<jl[xx].size();i++){
Q.push(jie(jl[xx][i],dis[jl[xx][i]]));
}
while(!Q.empty()){
int now = Q.top().num;
Q.pop();
if(vis[now]) continue;
vis[now]=;
for(int i=headd[now];i!=-;i=b[i].next){
int u=b[i].to;
if(dis[u]>dis[now]+b[i].val){
dis[u]=dis[now]+b[i].val;
if(shuyu[now]==shuyu[u]) Q.push(jie(u,dis[u]));
}
if(shuyu[u]!=shuyu[now] && (--ru[shuyu[u]]==)) q.push(shuyu[u]);
}
}
}
}
int main(){
memset(headd,-,sizeof(headd));
scanf("%d%d%d%d",&t,&r,&p,&s);
for(int i=;i<=r;i++){
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
add(aa,bb,cc);
add(bb,aa,cc);
}
for(int i=;i<=t;i++){
if(!vis[i]) cnt++,dfs(i);
}
for(int i=;i<=p;i++){
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
add(aa,bb,cc);
ru[shuyu[bb]]++;
}
memset(vis,,sizeof(vis));
memset(dis,0x7f,sizeof(dis));
for(int i=;i<=cnt;i++) if(ru[i]==) q.push(i);
dij();
for(int i=;i<=t;i++){
if(dis[i]>INF) printf("NO PATH\n");
else printf("%d\n",dis[i]);
}
return ;
}

[USACO11JAN]Roads and Planes G【缩点+Dij+拓补排序】的更多相关文章

  1. P3008 [USACO11JAN]Roads and Planes G 拓扑排序+Dij

    题目描述 Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条道路 (1 & ...

  2. 【图论】USACO11JAN Roads and Planes G

    题目内容 洛谷链接 Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到\(T\)个城镇 (\(1 <= T <= 25,000\)),编号为\(1\)到\ ...

  3. P3008 [USACO11JAN]Roads and Planes G (最短路+拓扑排序)

    该最短路可不同于平时简单的最短路模板. 这道题一看就知道用SPFA,但是众所周知,USACO要卡spfa,所以要用更快的算法. 单向边不构成环,双向边都是非负的,所以可以将图分成若干个连通块(内部只有 ...

  4. [USACO11JAN]Roads and Planes

    嘟嘟嘟 这道题他会卡spfa,不过据说加SLF优化后能过,但还是讲讲正解吧. 题中有很关键的一句,就是无向边都是正的,只有单向边可能会有负的.当把整个图缩点后,有向边只会连接在每一个联通块之间(因为图 ...

  5. P3008 [USACO11JAN]道路和飞机Roads and Planes

    P3008 [USACO11JAN]道路和飞机Roads and Planes Dijkstra+Tarjan 因为题目有特殊限制所以不用担心负权的问题 但是朴素的Dijkstra就算用堆优化,也显然 ...

  6. Luogu 3008 [USACO11JAN]道路和飞机Roads and Planes

    BZOJ2200 听说加上slf优化的spfa的卡过,真的不想写这些东西. 考虑使用堆优化的dij算法. 先加上所有双向边,然后dfs一下搜出所有由双向边构成的联通块,然后加上所有的单向边,一边对所有 ...

  7. poj 2762 Going from u to v or from v to u?(强连通分量+缩点重构图+拓扑排序)

    http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit:  ...

  8. 【强连通分量缩点】【拓扑排序】【dp预处理】CDOJ1640 花自飘零水自流,一种相思,两处闲愁。

    题意: 在n个点m条边的有向图上,从1出发的回路最多经过多少个不同的点 可以在一条边上逆行一次 题解: 在同一个强连通分量中,显然可以经过当中的每一个点 因此先将强连通分量缩点,点权为强连通分量的点数 ...

  9. 【差分约束系统】【强连通分量缩点】【拓扑排序】【DAG最短路】CDOJ1638 红藕香残玉簟秋,轻解罗裳,独上兰舟。

    题意: 给定n个点(点权未知)和m条信息:u的权值>=v的权值+w 求点权的极小解和极大解(无解则输出-1) 极小解即每个点的点权可能的最小值 极大解即每个点的点权可能的最大值 题解: 差分约束 ...

随机推荐

  1. Redis 入门到分布式 (一)Redis初识

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.Redis特性目录 Redis的特性: 速度快 持久化 多种数据结构 支持多种编辑语言 功能丰富 简 ...

  2. Java实现 LeetCode 523 连续的子数组和(ง •_•)ง

    523. 连续的子数组和 给定一个包含非负数的数组和一个目标整数 k,编写一个函数来判断该数组是否含有连续的子数组,其大小至少为 2,总和为 k 的倍数,即总和为 n*k,其中 n 也是一个整数. 示 ...

  3. Java实现 蓝桥杯 算法训练 p1103

    算法训练 P1103 时间限制:1.0s 内存限制:256.0MB 编程实现两个复数的运算.设有两个复数 和 ,则他们的运算公式为: 要求:(1)定义一个结构体类型来描述复数. (2)复数之间的加法. ...

  4. Java实现 洛谷 P1980 计数问题

    import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = ...

  5. Java实现 蓝桥杯 算法提高 矩阵翻转

    问题描述 Ciel有一个N*N的矩阵,每个格子里都有一个整数. N是一个奇数,设X = (N+1)/2.Ciel每次都可以做这样的一次操作:他从矩阵选出一个X*X的子矩阵,并将这个子矩阵中的所有整数都 ...

  6. 循序渐进VUE+Element 前端应用开发(8)--- 树列表组件的使用

    在我前面随笔<循序渐进VUE+Element 前端应用开发(6)--- 常规Element 界面组件的使用>里面曾经介绍过一些常规的界面组件的处理,主要介绍到单文本输入框.多文本框.下拉列 ...

  7. 第03组团队Git现场编程实战

    1.组员职责分工 张逸杰:复制监督整个编程任务的进程以及协助组员编程 黄智锋.刘汪洋:负责UI设计 苏凯婷.鲍冰如:爬取数据并负责测评出福州最受欢迎的商圈 陈荣杰.杨锦镔:爬取数据并负责测评出福州人均 ...

  8. SimpleDateFormat 和 Calendar 对于时间的处理

    import java.text.SimpleDateFormat;import java.util.Date;public class test { public static void main( ...

  9. 使用Docker搭建Nextcloud SSL站点

    1.启动mariadb docker run -d \ --name mysql \ -e MYSQL_ROOT_PASSWORD=<你的mysql密码> \ -p 13306:3306 ...

  10. sql 获取当前时间的前一天,不加时分秒

    select convert(datetime,convert(char(20),dateadd(day,-1,getdate()),102)) -1 为减去天数 getdate 为 获取当前时间