A - ACM Computer Factory POJ - 3436 网络流
A - ACM Computer Factory
As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.
Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.
Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.
Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.
Output specification describes the result of the operation, and is a set of Pnumbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.
The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.
After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.
As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.
Input
Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,PDi,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.
Constraints
1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000
Output
Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.
If several solutions exist, output any of them.
Sample Input
Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1
Sample Output
Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0
Hint
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
struct edge
{
int u, v, c, f;
edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层,表示每个点的层数
int iter[maxn];//当前弧优化
int m;
void init(int n)
{
for (int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c)
{
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
void BFS(int s)//预处理出level数组
//直接BFS到每个点
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = ; v < G[u].size(); v++)
{
edge& now = e[G[u][v]];
if (now.c > now.f && level[now.v] < )
{
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f)//DFS寻找增广路
{
if (u == t)return f;//已经到达源点,返回流量f
for (int &v = iter[u]; v < G[u].size(); v++)
//这里用iter数组表示每个点目前的弧,这是为了防止在一次寻找增广路的时候,对一些边多次遍历
//在每次找增广路的时候,数组要清空
{
edge &now = e[G[u][v]];
if (now.c - now.f > && level[u] < level[now.v])
//now.c - now.f > 0表示这条路还未满
//level[u] < level[now.v]表示这条路是最短路,一定到达下一层,这就是Dinic算法的思想
{
int d = dfs(now.v, t, min(f, now.c - now.f));
if (d > )
{
now.f += d;//正向边流量加d
e[G[u][v] ^ ].f -= d;
//反向边减d,此处在存储边的时候两条反向边可以通过^操作直接找到
return d;
}
}
}
return ;
}
int Maxflow(int s, int t)
{
int flow = ;
for (;;)
{
BFS(s);
if (level[t] < )return flow;//残余网络中到达不了t,增广路不存在
memset(iter, , sizeof(iter));//清空当前弧数组
int f;//记录增广路的可增加的流量
while ((f = dfs(s, t, INF)) > )
{
flow += f;
}
}
return flow;
} int main()
{
int n, m;
while(scanf("%d%d",&n,&m)!=EOF)//n是城市的数量,m是高速公路的数量
{
init(*n+);
int s, t, x, y;
scanf("%d%d", &s, &t);
for(int i=;i<=n;i++)
{
scanf("%d", &x);
add(i, i + n, x);
}
for(int i=;i<=m;i++)
{
scanf("%d%d", &x, &y);
add(x + n, y, inf);
add(y+n, x, inf);
}
int ans = Maxflow(s, t+n);
printf("%d\n", ans);
}
return ;
}
A - ACM Computer Factory POJ - 3436 网络流的更多相关文章
- ACM Computer Factory POJ - 3436 网络流拆点+路径还原
http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...
- ACM Computer Factory - poj 3436 (最大流)
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5949 Accepted: 2053 Special Judge ...
- (网络流)ACM Computer Factory --POJ --3436
链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...
- A - ACM Computer Factory - poj 3436(最大流)
题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前 ...
- POJ 3436 ACM Computer Factory (网络流,最大流)
POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...
- POJ 3436:ACM Computer Factory 网络流
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6247 Accepted: 2 ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- POJ 3464 ACM Computer Factory
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4829 Accepted: 1641 ...
- POJ-3436 ACM Computer Factory(网络流EK)
As you know, all the computers used for ACM contests must be identical, so the participants compete ...
随机推荐
- Docker php安装扩展步骤详解
前言 此篇,主要是演示docker-php-source , docker-php-ext-install ,docker-php-enable-docker-configure 这四个命令到底是用来 ...
- Java JUC之Atomic系列12大类实例讲解和原理分解
Java JUC之Atomic系列12大类实例讲解和原理分解 2013-02-21 0个评论 作者:xieyuooo 收藏 我要投稿 在java6以后我们不但接触到了Loc ...
- Maven版本不合适导致出现的问题如下,换个老版本就好了
2019-09-30 11:56:24,555 [ 597097] ERROR - #org.jetbrains.idea.maven - IntelliJ IDEA 2018.3.5 Build # ...
- 010-字符串-C语言笔记
010-字符串-C语言笔记 学习目标 1.[掌握]二维数组的声明和初始化 2.[掌握]遍历二维数组 3.[掌握]二维数组在内存中的存储 4.[掌握]二维数组与函数 5.[掌握]字符串 一.二维数组的声 ...
- AJ学IOS 之tableView的下拉放大图片的方法
AJ分享,必须精品 一:效果 tableview下拉的时候上部分图片放大会 二:代码 直接上代码,自己研究吧 #import "NYViewController.h" //图片的高 ...
- 嘿嘿,我就知道面试官接下来要问我 ConcurrentHashMap 底层原理了,看我怎么秀他
前言 上篇文章介绍了 HashMap 源码后,在博客平台广受好评,让本来己经不打算更新这个系列的我,仿佛被打了一顿鸡血.真的,被读者认可的感觉,就是这么奇妙. 然后,有读者希望我能出一版 Concur ...
- Ubuntu安装Elasticsearch6.3
本文使用的 Ubuntu 版本信息: Distributor ID: Ubuntu Description: Ubuntu LTS Release: 16.04 Codename: xenial 1. ...
- 如何可视化深度学习网络中Attention层
前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的.在小论文中主要研究了关于词性POS对输入序列的注意力机制.同时对比实验 ...
- 通过dockerfile制作镜像
Dockerfile是一个用于构建Docker镜像的文本文件,其中包含了创建Docker镜像的全部指令.就是将我们安装环境的每个步骤使用指令的形式存放在一个文件中,最后生成一个需要的环境. Docke ...
- MVC-过滤器-权限认证
过滤器主要基于特性,aop来实现对MVC管道中插入其他处理逻辑.比如,访问网站,需要检查是否已经登陆,若没登陆跳入登陆界面. 样例: 方法注册 执行效果 当不符合认证时: 上面是方法注册特性.还有类注 ...