题目

In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_ (data_structure)) One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its lef subtree.

Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

Sample Input 1:

8

98 72 86 60 65 12 23 50

Sample Output 1:

98 86 23

98 86 12

98 72 65

98 72 60 50

Max Heap

Sample Input 2:

8

8 38 25 58 52 82 70 60

Sample Output 2:

8 25 70

8 25 82

8 38 52

8 38 58 60

Min Heap

Sample Input 3:

8

10 28 15 12 34 9 8 56

Sample Output 3:

10 15 8

10 15 9

10 28 34

10 28 12 56

Not Heap

题目分析

已知完全二叉树层序序列,打印所有路径(从根节点到叶子节点)并判断是否为堆,为大顶堆还是小顶堆

解题思路

  1. 打印路径

    思路01:dfs深度优先遍历,用整型数组path[n]记录路径进行回溯

    思路02:dfs深度优先遍历,用vector vin链表记录路径进行回溯
  2. 判断是否为堆,为大顶堆还是小顶堆

    思路01:递归判断,用父节点与其左右子节点进行比较判断

    思路02:for循环,用所有子节点与其父节点进行比较判断

Code

Code 01

#include <iostream>
using namespace std;
/*
利用数组回溯
*/
int level[1001],path[1001];
int n;
void printPath(int pin) {
for(int i=0; i<=pin; i++) {
printf("%d",path[i]);
printf("%s",i==pin?"\n":" ");
}
}
void dfs(int vin, int pin) {
path[pin]=level[vin];
if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
printPath(pin);
return;
} else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL
path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出
printPath(pin+1);
return;
} else {
dfs(2*vin+2,pin+1);
dfs(2*vin+1,pin+1);
}
}
bool isMaxHeap(int vin) {
if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
if(2*vin+1<n&&level[2*vin+1]>level[vin])return false;
if(2*vin+2<n&&level[2*vin+2]>level[vin])return false;
return isMaxHeap(2*vin+1)&&isMaxHeap(2*vin+2);
}
bool isMinHeap(int vin) {
if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
if(2*vin+1<n&&level[2*vin+1]<level[vin])return false;
if(2*vin+2<n&&level[2*vin+2]<level[vin])return false;
return isMinHeap(2*vin+1)&&isMinHeap(2*vin+2);
}
int main(int argc,char * argv[]) {
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&level[i]);
}
dfs(0,0);
if(isMaxHeap(0)) {
printf("Max Heap\n");
} else if(isMinHeap(0)) {
printf("Min Heap\n");
} else {
printf("Not Heap\n");
}
return 0;
}

Code 02

#include <iostream>
#include <vector>
using namespace std;
/*
利用链表回溯
*/
int level[1001];
vector<int> path;
int n,isMax=1,isMin=1;
void printPath() {
for(int i=0; i<path.size(); i++) {
printf("%d",path[i]);
printf("%s",i==pin?"\n":" ");
}
}
void dfs(int vin) {
if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
printPath();
} else if(2*vin+2>=n) {//左子节点非NULL 右子节点为NULL
path.push_back(level[2*vin+1]);
printPath();
path.pop_back();
} else {
path.push_back(level[2*vin+2]);
dfs(2*vin+2);
path.pop_back();
path.push_back(level[2*vin+1]);
dfs(2*vin+1);
path.pop_back();
}
}
int main(int argc,char * argv[]) {
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&level[i]);
}
path.push_back(level[0]);
dfs(0);
for(int i=1;i<n;i++){
if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i]
if(level[(i-1)/2]<level[i])isMax=0;
}
if(isMax==1) {
printf("Max Heap\n");
} else if(isMin==1) {
printf("Min Heap\n");
} else {
printf("Not Heap\n");
}
return 0;
}

Code 03

#include <iostream>
using namespace std;
/*
利用数组回溯
*/
int level[1001],path[1001];
int n,isMax=1,isMin=1;
void printPath(int pin) {
for(int i=0; i<=pin; i++) {
printf("%d",path[i]);
printf("%s",i==pin?"\n":" ");
}
}
void dfs(int vin, int pin) {
path[pin]=level[vin];
if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
printPath(pin);
return;
} else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL
path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出
printPath(pin+1);
return;
} else {
dfs(2*vin+2,pin+1);
dfs(2*vin+1,pin+1);
}
}
int main(int argc,char * argv[]) {
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&level[i]);
}
dfs(0,0);
for(int i=1;i<n;i++){
if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i]
if(level[(i-1)/2]<level[i])isMax=0;
}
if(isMax==1) {
printf("Max Heap\n");
} else if(isMin==1) {
printf("Min Heap\n");
} else {
printf("Not Heap\n");
}
return 0;
}

PAT Advanced 1155 Heap Paths (30) [DFS, 深搜回溯,堆]的更多相关文章

  1. PAT Advanced 1155 Heap Paths (30 分)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  2. PAT甲级 1155 Heap Paths (30分) 堆模拟

    题意分析: 给出一个1000以内的整数N,以及N个整数,并且这N个数是按照完全二叉树的层序遍历输出的序列,输出所有的整条的先序遍历的序列(根 右 左),以及判断整棵树是否是符合堆排序的规则(判断是大顶 ...

  3. UVA 165 Stamps (DFS深搜回溯)

     Stamps  The government of Nova Mareterrania requires that various legal documents have stamps attac ...

  4. pat甲级 1155 Heap Paths (30 分)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  5. PAT 甲级 1155 Heap Paths

    https://pintia.cn/problem-sets/994805342720868352/problems/1071785408849047552 In computer science, ...

  6. PTA 1155 Heap Paths (DFS)

    题目链接:1155 Heap Paths (30 分) In computer science, a heap is a specialized tree-based data structure t ...

  7. HDU5723 Abandoned country (最小生成树+深搜回溯法)

    Description An abandoned country has n(n≤100000) villages which are numbered from 1 to n. Since aban ...

  8. DFS深搜——Red and Black——A Knight&#39;s Journey

    深搜,从一点向各处搜找到全部能走的地方. Problem Description There is a rectangular room, covered with square tiles. Eac ...

  9. DFS 深搜专题 入门典例 -- 凌宸1642

    DFS 深搜专题 入门典例 -- 凌宸1642 深度优先搜索 是一种 枚举所有完整路径以遍历所有情况的搜索方法 ,使用 递归 可以很好的实现 深度优先搜索. 1 最大价值 题目描述 ​ 有 n 件物品 ...

随机推荐

  1. CSP-J/S2019试题选做

    S D1T2 括号树 设\(f[u]\)表示根到\(u\)的路径上有多少子串是合法括号串.(即题目里的\(k_u\),此变量名缺乏个性,故换之) 从根向每个节点dfs,容易求出\(c[u]\):表示从 ...

  2. C++ 类 与 static

    背景 从学习C++到使用现在,发现很多新的东西,正好整理一下. static 为静态,指是当类编译加载的时候,内存就会开辟存储空间的. static 数据成员 在类中,static 可修饰 类中的成员 ...

  3. 2-10 就业课(2.0)-oozie:10、伪分布式环境转换为HA集群环境

    hadoop 的基础环境增强 HA模式 HA是为了保证我们的业务 系统 7 *24 的连续的高可用提出来的一种解决办法,现在hadoop当中的主节点,namenode以及resourceManager ...

  4. 第1节 IMPALA:6、yum源制作过程

    impala的安装:第一步:下载5个G的安装包,并且上传linux,解压第二步:安装httpd的服务,并启动,访问httpd就是访问我们linux的 /var/www/html这个路径下面的东西第三步 ...

  5. 如何修改 app.config 的配置信息

    如何修改 app.config 的配置信息 收藏 最问这个问题的人有点多,其实 .Net 提供了这样的功能我们可以在 app.config 中 userSettings 节点中保存我们的应用程序设置信 ...

  6. ReadAsm2

    首先查看题目 下载文档之后用虚拟机打开(我用的是Kali Linux) 推测应该是对这个func函数反汇编结果应该就出来了 用c写一下算出结果 #include<bits/stdc++.h> ...

  7. 洛谷 P2031 脑力达人之分割字串

    题目传送门 解题思路: f[i]表示到第i位可获得的最大分割次数,对于每个f[i]都可由其符合条件的前缀转移过来,条件就是当前串除了前缀的剩余字符里有所给单词,然后一看,这不是在剩余字符里找有没有所给 ...

  8. 牛客周赛11TG B-弹钢琴

    链接:https://ac.nowcoder.com/acm/contest/941/B来源:牛客网 题目描述 春希想听和纱弹钢琴! 为了阻止异变的发生,Pi将钢琴魔改了 钢琴上有 N 个键,每个键有 ...

  9. RAM和ROM的区别

    区别如下: 1.概念 RAM(random access memory)即随机存储内存,这种存储器在断电时将丢失其存储内容,故主要用于存储短时间使用的程序.ROM(Read-Only Memory)即 ...

  10. python3.7的一些心得,不定期更新。

    学习的python3.7.2,最新目前是3.8.1 这里记一下主要的几点: pip 是python的模块管理器,姑且这么叫它.和nodejs的npm一样的功能 官网下载python安装包,默认就会按照 ...