tensorflow1.0 构建卷积神经网络
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ["CUDA_DEVICE_ORDER"] = "0,1" mnist = input_data.read_data_sets("MNIST_data",one_hot=True) def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict ={xs:v_xs,keep_prob:1})
correct_predicton = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_predicton,tf.float32))
result = sess.run(accuracy,feed_dict = {xs:v_xs,ys:v_ys,keep_prob:1})
return result def weight_variable(shape):
initial = tf.truncated_normal(shape=shape,stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial) def conv2d(x,W):
#stride [1,x_movement,y_movement,1]
#Must have strides[0] = strides[3] = 1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME") def max_pool_2x2(x):
# stride [1,x_movement,y_movement,1]
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") def add_layer(inputs,in_size,out_size,activation_function=None):
Weight = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weight)+biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs #define placeholder for inputs to network xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1]) ## conv1 layer ##
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32 ## conv2 layer ##
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64 # #func1 layer
# input = tf.reshape(h_pool2,[-1,7*7*64])
# fc1 = add_layer(input,7*7*64,1024,activation_function=tf.nn.relu)
# fc1_drop = tf.nn.dropout(fc1,keep_prob)
#
# #func2 layer
# fc2 = add_layer(fc1_drop,1024,10,activation_function=tf.nn.softmax)
# prediction = fc2 ## func1 layer ##
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) ## func2 layer ##
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy) config = tf.ConfigProto(log_device_placement=True)
config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.initialize_all_variables()) for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))
tensorflow1.0 构建卷积神经网络的更多相关文章
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- TensorFlow构建卷积神经网络/模型保存与加载/正则化
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...
- 【深度学习与TensorFlow 2.0】卷积神经网络(CNN)
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”. ...
- 使用 Estimator 构建卷积神经网络
来源于:https://tensorflow.google.cn/tutorials/estimators/cnn 强烈建议前往学习 tf.layers 模块提供一个可用于轻松构建神经网络的高级 AP ...
- tensorflow1.0 构建神经网络做图片分类
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
- tensorflow1.0 构建神经网络做非线性归回
""" Please note, this code is only for python 3+. If you are using python 2+, please ...
- tensorflow1.0 构建lstm做图片分类
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #this is data mni ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...
- CS231n课程笔记翻译9:卷积神经网络笔记
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列 ...
随机推荐
- 科普 | 生成对抗网络(GAN)的发展史
来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起 ...
- 【NLP面试QA】激活函数与损失函数
目录 Sigmoid 函数的优缺点是什么 ReLU的优缺点 什么是交叉熵 为什么分类问题的损失函数为交叉熵而不能是 MSE? 多分类问题中,使用 sigmoid 和 softmax 作为最后一层激活函 ...
- Spring ioc xml 实例化bean 自己实现
public class DefClassPathXmlApplicationContext { private String xmlPath; public DefClassPathXmlAppli ...
- nginx负载均衡例子
upstream demo { ip_hash;//客户连接后, 一直用这个IP,直到会话结束,否则,动态程序可能会在换IP后出错 server 192.168.1.1:80 weight=5 | d ...
- java fork/join简单实践
我们知道,java8中有并行流,而并行流在后台的实现是通过fork/join池来完成的,例如: List<Integer> a = buildList(); List<Integer ...
- UITextFiled-集合目录
键盘弹起遮挡输入输入框(UITextFiled或者UITextView) 对于键盘弹起遮挡输入框的问题以前也想过解决办法比如:监听系统键盘弹出通知.根据每个控件所在 ...
- codeforces 466c(暴力枚举)
题目链接 思路如下 *题意: 给定一个序列,问有多少种方案可以将此序列分割成3个序列元素和完全相同的子序列.(子序列不能为空).即问有多少个点对(i,j)满足a[1]+-+a[i-1]=a[i]+a[ ...
- 28. 实现 strStr()
d地址:https://leetcode-cn.com/problems/implement-strstr/ <?php /** 实现 strStr() 函数. 给定一个 haystack 字符 ...
- 自动由@3x图片生成@2x和@1x的图片 - Xcode插件
原文:http://www.cocoachina.com/bbs/read.php?tid=277187 生成@3x图片对应的@2x和@1x版本--RTImageAssets 关键字:Xcode插件, ...
- python爬虫之requests的高级使用
1.requests能上传文件 # 导入requests模块 import requests # 定义一个dict files = {'file': open('D:/360Downloads/1.t ...