一、DataStream API之Data Sources(消费者之数据源)

介绍:

source是程序的数据源输入,你可以通过StreamExecutionEnvironment.addSource(sourceFunction)来为你的程序添加一个source。 flink提供了大量的已经实现好的source方法,你也可以自定义source 通过实现sourceFunction接口来自定义无并行度的source, 或者你也可以通过实现ParallelSourceFunction 接口 or 继承RichParallelSourceFunction 来自定义有并行度的source。

类型:
基于文件

readTextFile(path) 读取文本文件,文件遵循TextInputFormat 读取规则,逐行读取并返回。

基于socket

socketTextStream从socker中读取数据,元素可以通过一个分隔符切开。

基于集合

fromCollection(Collection) 通过java 的collection集合创建一个数据流,集合中的所有元素必须是相同类型的。

自定义输入

addSource 可以实现读取第三方数据源的数据 系统内置提供了一批connectors,连接器会提供对应的source支持【kafka】

代码实现:
1、fromCollection
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import java.util.ArrayList; /**
* 把collection集合作为数据源
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingFromCollection { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); ArrayList<Integer> data = new ArrayList<>();
data.add(10);
data.add(15);
data.add(20); //指定数据源
DataStreamSource<Integer> collectionData = env.fromCollection(data); //通map对数据进行处理
DataStream<Integer> num = collectionData.map(new MapFunction<Integer, Integer>() {
@Override
public Integer map(Integer value) throws Exception {
return value + 1;
}
}); //直接打印
num.print().setParallelism(1); env.execute("StreamingFromCollection"); }
}
2、 创建自定义单并行度为1的SourceFunction(addSource)

① 创建自定义单并行度为1的SourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.streaming.api.functions.source.SourceFunction;

/**
* 自定义实现并行度为1的source
*
* 模拟产生从1开始的递增数字
*
*
* 注意:
* SourceFunction 和 SourceContext 都需要指定数据类型,如果不指定,代码运行的时候会报错
* Caused by: org.apache.flink.api.common.functions.InvalidTypesException:
* The types of the interface org.apache.flink.streaming.api.functions.source.SourceFunction could not be inferred.
* Support for synthetic interfaces, lambdas, and generic or raw types is limited at this point
*
*
* Created by xuwei.tech on 2018/10/23.
*/
public class MyNoParalleSource implements SourceFunction<Long>{ private long count = 1L; private boolean isRunning = true; /**
* 主要的方法
* 启动一个source
* 大部分情况下,都需要在这个run方法中实现一个循环,这样就可以循环产生数据了
*
* @param ctx
* @throws Exception
*/
@Override
public void run(SourceContext<Long> ctx) throws Exception {
while(isRunning){
ctx.collect(count);
count++;
//每秒产生一条数据
Thread.sleep(1000);
}
} /**
* 取消一个cancel的时候会调用的方法
*
*/
@Override
public void cancel() {
isRunning = false;
}
}

②实现自定义单并行度为1的SourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time; /**
* 使用并行度为1的source
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyNoPralalleSource { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1 DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
System.out.println("接收到数据:" + value);
return value;
}
}); //每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0); //打印结果
sum.print().setParallelism(1); String jobName = StreamingDemoWithMyNoPralalleSource.class.getSimpleName();
env.execute(jobName);
}
}
3、 创建自定义多并行度为1的ParallelSourceFunction (addSource)

① 创建自定义多并行度为1的ParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;

/**
* 自定义实现一个支持并行度的source
* Created by xuwei.tech on 2018/10/23.
*/
public class MyParalleSource implements ParallelSourceFunction<Long> { private long count = 1L; private boolean isRunning = true; /**
* 主要的方法
* 启动一个source
* 大部分情况下,都需要在这个run方法中实现一个循环,这样就可以循环产生数据了
*
* @param ctx
* @throws Exception
*/
@Override
public void run(SourceContext<Long> ctx) throws Exception {
while(isRunning){
ctx.collect(count);
count++;
//每秒产生一条数据
Thread.sleep(1000);
}
} /**
* 取消一个cancel的时候会调用的方法
*
*/
@Override
public void cancel() {
isRunning = false;
}
}

②实现自定义多并行度为1的ParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time; /**
* 使用多并行度的source
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyPralalleSource { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //获取数据源
DataStreamSource<Long> text = env.addSource(new MyParalleSource()).setParallelism(2); DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
System.out.println("接收到数据:" + value);
return value;
}
}); //每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0); //打印结果
sum.print().setParallelism(1); String jobName = StreamingDemoWithMyPralalleSource.class.getSimpleName();
env.execute(jobName);
}
}
4、 创建自定义多并行度为1的RichParallelSourceFunction(addSource)

① 创建自定义多并行度为1的RichParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction; /**
* 自定义实现一个支持并行度的source
*
* RichParallelSourceFunction 会额外提供open和close方法
* 针对source中如果需要获取其他链接资源,那么可以在open方法中获取资源链接,在close中关闭资源链接
*
* Created by xuwei.tech on 2018/10/23.
*/
public class MyRichParalleSource extends RichParallelSourceFunction<Long> { private long count = 1L; private boolean isRunning = true; /**
* 主要的方法
* 启动一个source
* 大部分情况下,都需要在这个run方法中实现一个循环,这样就可以循环产生数据了
*
* @param ctx
* @throws Exception
*/
@Override
public void run(SourceContext<Long> ctx) throws Exception {
while(isRunning){
ctx.collect(count);
count++;
//每秒产生一条数据
Thread.sleep(1000);
}
} /**
* 取消一个cancel的时候会调用的方法
*
*/
@Override
public void cancel() {
isRunning = false;
} /**
* 这个方法只会在最开始的时候被调用一次
* 实现获取链接的代码
* @param parameters
* @throws Exception
*/
@Override
public void open(Configuration parameters) throws Exception {
System.out.println("open.............");
super.open(parameters);
} /**
* 实现关闭链接的代码
* @throws Exception
*/
@Override
public void close() throws Exception {
super.close();
}
}

②实现自定义多并行度为1的RichParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time; /**
* 使用多并行度的source
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyRichPralalleSource { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //获取数据源
DataStreamSource<Long> text = env.addSource(new MyRichParalleSource()).setParallelism(2); DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
System.out.println("接收到数据:" + value);
return value;
}
}); //每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0); //打印结果
sum.print().setParallelism(1); String jobName = StreamingDemoWithMyRichPralalleSource.class.getSimpleName();
env.execute(jobName);
}
}

二、DataStream API之Transformations

介绍:

  1. map:输入一个元素,然后返回一个元素,中间可以做一些清洗转换等操作
  2. flatmap:输入一个元素,可以返回零个,一个或者多个元素
  3. filter:过滤函数,对传入的数据进行判断,符合条件的数据会被留下
  4. keyBy:根据指定的key进行分组,相同key的数据会进入同一个分区【典型用法见备注】
  5. reduce:对数据进行聚合操作,结合当前元素和上一次reduce返回的值进行聚合操作,然后返回一个新的值
  6. aggregations:sum(),min(),max()等
  7. window:在后面单独详解
  8. Union:合并多个流,新的流会包含所有流中的数据,但是union是一个限制,就是所有合并的流类型必须是一致的。
  9. Connect:和union类似,但是只能连接两个流,两个流的数据类型可以不同,会对两个流中的数据应用不同的处理方法。
  10. CoMap, CoFlatMap:在ConnectedStreams中需要使用这种函数,类似于map和flatmap
  11. Split:根据规则把一个数据流切分为多个流
  12. Select:和split配合使用,选择切分后的流
代码实现:
1、filter
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource; /**
* Filter演示
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoFilter { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1 DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
System.out.println("原始接收到数据:" + value);
return value;
}
}); //执行filter过滤,满足条件的数据会被留下
DataStream<Long> filterData = num.filter(new FilterFunction<Long>() {
//把所有的奇数过滤掉
@Override
public boolean filter(Long value) throws Exception {
return value % 2 == 0;
}
}); DataStream<Long> resultData = filterData.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
System.out.println("过滤之后的数据:" + value);
return value;
}
}); //每2秒钟处理一次数据
DataStream<Long> sum = resultData.timeWindowAll(Time.seconds(2)).sum(0); //打印结果
sum.print().setParallelism(1); String jobName = StreamingDemoFilter.class.getSimpleName();
env.execute(jobName);
}
}
2、Split
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.collector.selector.OutputSelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SplitStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource; import java.util.ArrayList; /**
* split
*
* 根据规则把一个数据流切分为多个流
*
* 应用场景:
* 可能在实际工作中,源数据流中混合了多种类似的数据,多种类型的数据处理规则不一样,所以就可以在根据一定的规则,
* 把一个数据流切分成多个数据流,这样每个数据流就可以使用不用的处理逻辑了
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoSplit { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1 //对流进行切分,按照数据的奇偶性进行区分
SplitStream<Long> splitStream = text.split(new OutputSelector<Long>() {
@Override
public Iterable<String> select(Long value) {
ArrayList<String> outPut = new ArrayList<>();
if (value % 2 == 0) {
outPut.add("even");//偶数
} else {
outPut.add("odd");//奇数
}
return outPut;
}
}); //选择一个或者多个切分后的流
DataStream<Long> evenStream = splitStream.select("even");
DataStream<Long> oddStream = splitStream.select("odd"); DataStream<Long> moreStream = splitStream.select("odd","even"); //打印结果
moreStream.print().setParallelism(1); String jobName = StreamingDemoSplit.class.getSimpleName();
env.execute(jobName);
}
}
3、union(注意两个数据源类型必须相同)
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource; /**
* union
* 合并多个流,新的流会包含所有流中的数据,但是union是一个限制,就是所有合并的流类型必须是一致的
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoUnion { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //获取数据源
DataStreamSource<Long> text1 = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1 DataStreamSource<Long> text2 = env.addSource(new MyNoParalleSource()).setParallelism(1); //把text1和text2组装到一起
DataStream<Long> text = text1.union(text2); DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
System.out.println("原始接收到数据:" + value);
return value;
}
}); //每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0); //打印结果
sum.print().setParallelism(1); String jobName = StreamingDemoUnion.class.getSimpleName();
env.execute(jobName);
}
}
4、Connect(可以合并两种类型不一样的数据流)
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource; /**
* connect
* 和union类似,但是只能连接两个流,两个流的数据类型可以不同,会对两个流中的数据应用不同的处理方法
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoConnect { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //获取数据源
DataStreamSource<Long> text1 = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1 DataStreamSource<Long> text2 = env.addSource(new MyNoParalleSource()).setParallelism(1);
SingleOutputStreamOperator<String> text2_str = text2.map(new MapFunction<Long, String>() {
@Override
public String map(Long value) throws Exception {
return "str_" + value;
}
}); ConnectedStreams<Long, String> connectStream = text1.connect(text2_str); SingleOutputStreamOperator<Object> result = connectStream.map(new CoMapFunction<Long, String, Object>() {
@Override
public Object map1(Long value) throws Exception {
return value;
} @Override
public Object map2(String value) throws Exception {
return value;
}
}); //打印结果
result.print().setParallelism(1); String jobName = StreamingDemoConnect.class.getSimpleName();
env.execute(jobName);
}
}
5、broadcast(broadcast分区规则)
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource; /**
* broadcast分区规则
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyNoPralalleSourceBroadcast { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(4); //获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1 DataStream<Long> num = text.broadcast().map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
long id = Thread.currentThread().getId();
System.out.println("线程id:"+id+",接收到数据:" + value);
return value;
}
}); //每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0); //打印结果
sum.print().setParallelism(1); String jobName = StreamingDemoWithMyNoPralalleSourceBroadcast.class.getSimpleName();
env.execute(jobName);
}
}
总结:

Flink 状态(State)管理与恢复

一. 状态(State)
介绍:
  • 我们前面写的word count的例子,没有包含状态管理。如果一个task在处理过程中挂掉了,那么它在内存中的状态都会丢失,所有的数据都需要重新计算。从容错和消息处理的语义上(at least once, exactly once),Flink引入了state和checkpoint。
  • 首先区分一下两个概念
  • state一般指一个具体的task/operator的状态【state数据默认保存在java的堆内存中】
  • 而checkpoint【可以理解为checkpoint是把state数据持久化存储了】,则表示了一个Flink Job在一个特定时刻的一份全局状态快照,即包含了所有task/operator的状态
  • 注意:task是Flink中执行的基本单位。operator指算子(transformation)。
  • State可以被记录,在失败的情况下数据还可以恢复
  • Flink中有两种基本类型的State
  • Keyed State
  • Operator State
  • Keyed State和Operator State,可以以两种形式存在:
  • 原始状态(raw state)
  • 托管状态(managed state)
  • 托管状态是由Flink框架管理的状态
  • 而原始状态,由用户自行管理状态具体的数据结构,框架在做checkpoint的时候,使用byte[]来读写状态内容,对其内部数据结构一无所知。
  • 通常在DataStream上的状态推荐使用托管的状态,当实现一个用户自定义的operator时,会使用到原始状态。
1. State-Keyed State
  • 顾名思义,就是基于KeyedStream上的状态。这个状态是跟特定的key绑定的,对KeyedStream流上的每一个key,都对应一个state。
  • stream.keyBy(…)
  • 保存state的数据结构
  • ValueState<T>:即类型为T的单值状态。这个状态与对应的key绑定,是最简单的状态了。它可以通过update方法更新状态值,通过value()方法获取状态值
  • ListState<T>:即key上的状态值为一个列表。可以通过add方法往列表中附加值;也可以通过get()方法返回一个Iterable<T>来遍历状态值
  • ReducingState<T>:这种状态通过用户传入的reduceFunction,每次调用add方法添加值的时候,会调用reduceFunction,最后合并到一个单一的状态值
  • MapState<UK, UV>:即状态值为一个map。用户通过put或putAll方法添加元素
  • 需要注意的是,以上所述的State对象,仅仅用于与状态进行交互(更新、删除、清空等),而真正的状态值,有可能是存在内存、磁盘、或者其他分布式存储系统中。相当于我们只是持有了这个状态的句柄
2. State-Operator State
  • 与Key无关的State,与Operator绑定的state,整个operator只对应一个state
  • 保存state的数据结构
  • ListState<T>
  • 举例来说,Flink中的Kafka Connector,就使用了operator state。它会在每个connector实例中,保存该实例中消费topic的所有(partition, offset)映射

二、状态容错

1、checkpoint

  • 依靠checkPoint机制
  • 保证exactly-once
  • 只能保证Flink系统内的exactly-once
  • 对于source和sink需要依赖外部的组件一同保证
checkPoint介绍:
  • 为了保证state的容错性,Flink需要对state进行checkpoint。
  • Checkpoint是Flink实现容错机制最核心的功能,它能够根据配置周期性地基于Stream中各个Operator/task的状态来生成快照,从而将这些状态数据定期持久化存储下来,当Flink程序一旦意外崩溃时,重新运行程序时可以有选择地从这些快照进行恢复,从而修正因为故障带来的程序数据异常
  • Flink的checkpoint机制可以与(stream和state)的持久化存储交互的前提:
  • 持久化的source,它需要支持在一定时间内重放事件。这种sources的典型例子是持久化的消息队列(比如Apache Kafka,RabbitMQ等)或文件系统(比如HDFS,S3,GFS等)
  • 用于state的持久化存储,例如分布式文件系统(比如HDFS,S3,GFS等)
checkPoint配置:
  • 默认checkpoint功能是disabled的,想要使用的时候需要先启用
  • checkpoint开启之后,默认的checkPointMode是Exactly-once
  • checkpoint的checkPointMode有两种,Exactly-once和At-least-once
  • Exactly-once对于大多数应用来说是最合适的。At-least-once可能用在某些延迟超低的应用程序(始终延迟为几毫秒)
checkpoint配置conf
  • 默认checkpoint功能是disabled的,想要使用的时候需要先启用
  • StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
  • // 每隔1000 ms进行启动一个检查点【设置checkpoint的周期】
  • env.enableCheckpointing(1000);
  • // 高级选项:
  • // 设置模式为exactly-once (这是默认值)
  • env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
  • // 确保检查点之间有至少500 ms的间隔【checkpoint最小间隔】
  • env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
  • // 检查点必须在一分钟内完成,或者被丢弃【checkpoint的超时时间】
  • env.getCheckpointConfig().setCheckpointTimeout(60000);
  • // 同一时间只允许进行一个检查点
  • env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
  • // 表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint【详细解释见备注】
  • env.getCheckpointConfig().enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

2、State Backend(状态的后端存储)

介绍:
  • 默认情况下,state会保存在taskmanager的内存中,checkpoint会存储在JobManager的内存中。
  • state 的store和checkpoint的位置取决于State Backend的配置
  • env.setStateBackend(…)
  • 一共有三种State Backend
  • MemoryStateBackend
  • FsStateBackend
  • RocksDBStateBackend
分类:
1、 MemoryStateBackend
  • state数据保存在java堆内存中,执行checkpoint的时候,会把state的快照数据保存到jobmanager的内存中
  • 基于内存的state backend在生产环境下不建议使用
2、 FsStateBackend
  • state数据保存在taskmanager的内存中,执行checkpoint的时候,会把state的快照数据保存到配置的文件系统中
  • 可以使用hdfs等分布式文件系统
3、RocksDBStateBackend
  • RocksDB跟上面的都略有不同,它会在本地文件系统中维护状态,state会直接写入本地rocksdb中。同时它需要配置一个远端的filesystem uri(一般是HDFS),在做checkpoint的时候,会把本地的数据直接复制到filesystem中。fail over的时候从filesystem中恢复到本地
  • RocksDB克服了state受内存限制的缺点,同时又能够持久化到远端文件系统中,比较适合在生产中使用
state配置:

修改State Backend的两种方式

  • 第一种:单任务调整
  • 修改当前任务代码
  • env.setStateBackend(new FsStateBackend("hdfs://namenode:9000/flink/checkpoints"));
  • 或者new MemoryStateBackend()
  • 或者new RocksDBStateBackend(filebackend, true);【需要添加第三方依赖】
  • 第二种:全局调整
  • 修改flink-conf.yaml
  • state.backend: filesystem
  • state.checkpoints.dir: hdfs://namenode:9000/flink/checkpoints
  • 注意:state.backend的值可以是下面几种:jobmanager(MemoryStateBackend), filesystem(FsStateBackend), rocksdb(RocksDBStateBackend)

三、Restart Strategies(重启策略)

介绍:
  • Flink支持不同的重启策略,以在故障发生时控制作业如何重启
  • 集群在启动时会伴随一个默认的重启策略,在没有定义具体重启策略时会使用该默认策略。 如果在工作提交时指定了一个重启策略,该策略会覆盖集群的默认策略
  • 默认的重启策略可以通过 Flink 的配置文件 flink-conf.yaml 指定。配置参数 restart-strategy 定义了哪个策略被使用。
  • 常用的重启策略
  • 固定间隔 (Fixed delay)
  • 失败率 (Failure rate)
  • 无重启 (No restart)
  • 如果没有启用 checkpointing,则使用无重启 (no restart) 策略。
  • 如果启用了 checkpointing,但没有配置重启策略,则使用固定间隔 (fixed-delay) 策略,其中 Integer.MAX_VALUE 参数是尝试重启次数
  • 重启策略可以在flink-conf.yaml中配置,表示全局的配置。也可以在应用代码中动态指定,会覆盖全局配置
分类:
  • 1、重启策略之固定间隔 (Fixed delay)
  • 第一种:全局配置 flink-conf.yaml
  • restart-strategy: fixed-delay
  • restart-strategy.fixed-delay.attempts: 3
  • restart-strategy.fixed-delay.delay: 10 s
  • 第二种:应用代码设置
  • env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
  • 3, // 尝试重启的次数
  • Time.of(10, TimeUnit.SECONDS) // 间隔 ));
2、重启策略之失败率 (Failure rate)
  • 第一种:全局配置 flink-conf.yaml
  • restart-strategy: failure-rate
  • restart-strategy.failure-rate.max-failures-per-interval: 3
  • restart-strategy.failure-rate.failure-rate-interval: 5 min
  • restart-strategy.failure-rate.delay: 10 s
  • 第二种:应用代码设置
  • env.setRestartStrategy(RestartStrategies.failureRateRestart(
  • 3, // 一个时间段内的最大失败次数
  • Time.of(5, TimeUnit.MINUTES), // 衡量失败次数的是时间段
  • Time.of(10, TimeUnit.SECONDS) // 间隔 ));
3、重启策略之无重启 (No restart)
  • 第一种:全局配置 flink-conf.yaml
  • restart-strategy: none
  • 第二种:应用代码设置
  • env.setRestartStrategy(RestartStrategies.noRestart());
4、保存多个Checkpoint
  • 默认情况下,如果设置了Checkpoint选项,则Flink只保留最近成功生成的1个Checkpoint,而当Flink程序失败时,可以从最近的这个Checkpoint来进行恢复。但是,如果我们希望保留多个Checkpoint,并能够根据实际需要选择其中一个进行恢复,这样会更加灵活,比如,我们发现最近4个小时数据记录处理有问题,希望将整个状态还原到4小时之前
  • Flink可以支持保留多个Checkpoint,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,指定最多需要保存Checkpoint的个数
  • state.checkpoints.num-retained: 20
  • 这样设置以后就查看对应的Checkpoint在HDFS上存储的文件目录
  • hdfs dfs -ls hdfs://namenode:9000/flink/checkpoints
  • 如果希望回退到某个Checkpoint点,只需要指定对应的某个Checkpoint路径即可实现
6、从Checkpoint进行恢复
  • 如果Flink程序异常失败,或者最近一段时间内数据处理错误,我们可以将程序从某一个Checkpoint点进行恢复
  • bin/flink run -s hdfs://namenode:9000/flink/checkpoints/467e17d2cc343e6c56255d222bae3421/chk-56/_metadata flink-job.jar
  • 程序正常运行后,还会按照Checkpoint配置进行运行,继续生成Checkpoint数据
7、savePoint
介绍:
  • Flink通过Savepoint功能可以做到程序升级后,继续从升级前的那个点开始执行计算,保证数据不中断
  • 全局,一致性快照。可以保存数据源offset,operator操作状态等信息
  • 可以从应用在过去任意做了savepoint的时刻开始继续消费
配置使用:
  1. 在flink-conf.yaml中配置Savepoint存储位置
  • 不是必须设置,但是设置后,后面创建指定Job的Savepoint时,可以不用在手动执行命令时指定Savepoint的位置
  • state.savepoints.dir: hdfs://namenode:9000/flink/savepoints
  1. 触发一个savepoint【直接触发或者在cancel的时候触发】
  • bin/flink savepoint jobId [targetDirectory] [-yid yarnAppId]【针对on yarn模式需要指定-yid参数】
  • bin/flink cancel -s [targetDirectory] jobId [-yid yarnAppId]【针对on yarn模式需要指定-yid参数】
  1. 从指定的savepoint启动job bin/flink run -s savepointPath [runArgs]
总结:checkPoint vs savePoint
  1. checkPoint
  • 应用定时触发,用于保存状态,会过期
  • 内部应用失败重启的时候使用
  1. savePoint
  • 用户手动执行,是指向Checkpoint的指针,不会过期
  • 在升级的情况下使用
  • 注意:为了能够在作业的不同版本之间以及 Flink 的不同版本之间顺利升级,强烈推荐程序员通过 uid(String) 方法手动的给算子赋予 ID,这些 ID 将用于确定每一个算子的状态范围。如果不手动给各算子指定 ID,则会由 Flink 自动给每个算子生成一个 ID。只要这些 ID 没有改变就能从保存点(savepoint)将程序恢复回来。而这些自动生成的 ID 依赖于程序的结构,并且对代码的更改是很敏感的。因此,强烈建议用户手动的设置 ID。
9、checkpoint(检查点)
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.runtime.state.memory.MemoryStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector; /**
* checkpoint
*
* Created by xuwei.tech on 2018/10/8.
*/
public class SocketWindowWordCountJavaCheckPoint { public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
port = parameterTool.getInt("port");
}catch (Exception e){
System.err.println("No port set. use default port 9000--java");
port = 9000;
} //获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 每隔1000 ms进行启动一个检查点【设置checkpoint的周期】
env.enableCheckpointing(1000);
// 高级选项:
// 设置模式为exactly-once (这是默认值)
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 确保检查点之间有至少500 ms的间隔【checkpoint最小间隔】
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// 检查点必须在一分钟内完成,或者被丢弃【checkpoint的超时时间】
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 同一时间只允许进行一个检查点
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint【详细解释见备注】
//ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint
//ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION: 表示一旦Flink处理程序被cancel后,会删除Checkpoint数据,只有job执行失败的时候才会保存checkpoint
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); //设置statebackend //env.setStateBackend(new MemoryStateBackend());
//env.setStateBackend(new FsStateBackend("hdfs://hadoop100:9000/flink/checkpoints"));
//env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop100:9000/flink/checkpoints",true)); String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter); // a a c // a 1
// a 1
// c 1
DataStream<WordWithCount> windowCounts = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] splits = value.split("\\s");
for (String word : splits) {
out.collect(new WordWithCount(word, 1L));
}
}
}).keyBy("word")
.timeWindow(Time.seconds(2), Time.seconds(1))//指定时间窗口大小为2秒,指定时间间隔为1秒
.sum("count");//在这里使用sum或者reduce都可以
/*.reduce(new ReduceFunction<WordWithCount>() {
public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception { return new WordWithCount(a.word,a.count+b.count);
}
})*/
//把数据打印到控制台并且设置并行度
windowCounts.print().setParallelism(1); //这一行代码一定要实现,否则程序不执行
env.execute("Socket window count"); } public static class WordWithCount{
public String word;
public long count;
public WordWithCount(){}
public WordWithCount(String word,long count){
this.word = word;
this.count = count;
}
@Override
public String toString() {
return "WordWithCount{" +
"word='" + word + '\'' +
", count=" + count +
'}';
}
}
}

三、DataStream API之partition

介绍:
  1. Random partitioning:随机分区
  2. dataStream.shuffle()
  3. Rebalancing:对数据集进行再平衡,重分区,消除数据倾斜
  4. dataStream.rebalance()
  5. Rescaling:解释见备注
  6. dataStream.rescale()
  7. Custom partitioning:自定义分区
  8. 自定义分区需要实现Partitioner接口
  9. dataStream.partitionCustom(partitioner, "someKey")
  10. 或者dataStream.partitionCustom(partitioner, 0);
  11. Broadcasting:在后面单独详解
代码实现:
1、Partitioner

①创建分区类

package xuwei.tech.streaming.custormPartition;

import org.apache.flink.api.common.functions.Partitioner;

/**
* Created by xuwei.tech on 2018/10/23.
*/
public class MyPartition implements Partitioner<Long> {
@Override
public int partition(Long key, int numPartitions) {
System.out.println("分区总数:"+numPartitions);
if(key % 2 == 0){
return 0;
}else{
return 1;
}
}
}

②实现分区类的对象化

package xuwei.tech.streaming.custormPartition;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import xuwei.tech.streaming.custormSource.MyNoParalleSource; /**
*
* 使用自定义分析
* 根据数字的奇偶性来分区
*
* Created by xuwei.tech on 2018/10/23.
*/
public class SteamingDemoWithMyParitition { public static void main(String[] args) throws Exception{ StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(2);
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()); //对数据进行转换,把long类型转成tuple1类型
DataStream<Tuple1<Long>> tupleData = text.map(new MapFunction<Long, Tuple1<Long>>() {
@Override
public Tuple1<Long> map(Long value) throws Exception {
return new Tuple1<>(value);
}
});
//分区之后的数据
DataStream<Tuple1<Long>> partitionData= tupleData.partitionCustom(new MyPartition(), 0); DataStream<Long> result = partitionData.map(new MapFunction<Tuple1<Long>, Long>() {
@Override
public Long map(Tuple1<Long> value) throws Exception {
System.out.println("当前线程id:" + Thread.currentThread().getId() + ",value: " + value);
return value.getField(0);
}
}); result.print().setParallelism(1); env.execute("SteamingDemoWithMyParitition"); }
}

四、DataStream API之Data Sink(数据落地)

介绍:
  1. writeAsText():将元素以字符串形式逐行写入,这些字符串通过调用每个元素的toString()方法来获取
  2. print() / printToErr():打印每个元素的toString()方法的值到标准输出或者标准错误输出流中
  3. 自定义输出addSink【kafka、redis】
1、内置Connectors
  1. Apache Kafka (source/sink)
  2. Apache Cassandra (sink)
  3. Elasticsearch (sink)
  4. Hadoop FileSystem (sink)
  5. RabbitMQ (source/sink)
  6. Apache ActiveMQ (source/sink)
  7. Redis (sink)
2. 自定义sink
  1. 实现自定义的sink
  2. 实现SinkFunction接口
  3. 或者继承RichSinkFunction
  4. 参考org.apache.flink.streaming.connectors.redis.RedisSink
代码
1、落地到Redis
package xuwei.tech.streaming.sink;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper; /**
* 接收socket数据,把数据保存到redis中
*
* list
*
* lpush list_key value
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoToRedis { public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStreamSource<String> text = env.socketTextStream("hadoop100", 9000, "\n"); //lpsuh l_words word //对数据进行组装,把string转化为tuple2<String,String>
DataStream<Tuple2<String, String>> l_wordsData = text.map(new MapFunction<String, Tuple2<String, String>>() {
@Override
public Tuple2<String, String> map(String value) throws Exception {
return new Tuple2<>("l_words", value);
}
}); //创建redis的配置
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("hadoop110").setPort(6379).build(); //创建redissink
RedisSink<Tuple2<String, String>> redisSink = new RedisSink<>(conf, new MyRedisMapper()); l_wordsData.addSink(redisSink); env.execute("StreamingDemoToRedis");
} public static class MyRedisMapper implements RedisMapper<Tuple2<String, String>>{
//表示从接收的数据中获取需要操作的redis key
@Override
public String getKeyFromData(Tuple2<String, String> data) {
return data.f0;
}
//表示从接收的数据中获取需要操作的redis value
@Override
public String getValueFromData(Tuple2<String, String> data) {
return data.f1;
} @Override
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.LPUSH);
}
} }
2、落地到kafka(生产者)
package xuwei.tech.streaming;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper; import java.util.Properties; /**
* kafkaSink
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingKafkaSink { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //checkpoint配置
env.enableCheckpointing(5000);
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
env.getCheckpointConfig().setCheckpointTimeout(60000);
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); //设置statebackend //env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop100:9000/flink/checkpoints",true)); DataStreamSource<String> text = env.socketTextStream("hadoop100", 9001, "\n"); String brokerList = "hadoop110:9092";
String topic = "t1"; Properties prop = new Properties();
prop.setProperty("bootstrap.servers",brokerList); //第一种解决方案,设置FlinkKafkaProducer011里面的事务超时时间
//设置事务超时时间
//prop.setProperty("transaction.timeout.ms",60000*15+""); //第二种解决方案,设置kafka的最大事务超时时间 //FlinkKafkaProducer011<String> myProducer = new FlinkKafkaProducer011<>(brokerList, topic, new SimpleStringSchema()); //使用仅一次语义的kafkaProducer
FlinkKafkaProducer011<String> myProducer = new FlinkKafkaProducer011<>(topic, new KeyedSerializationSchemaWrapper<String>(new SimpleStringSchema()), prop, FlinkKafkaProducer011.Semantic.EXACTLY_ONCE);
text.addSink(myProducer); env.execute("StreamingFromCollection"); }
}
3、消费kafka数据
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011; import java.util.ArrayList;
import java.util.Properties; /**
* kafkaSource
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingKafkaSource { public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //checkpoint配置
env.enableCheckpointing(5000);
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
env.getCheckpointConfig().setCheckpointTimeout(60000);
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); //设置statebackend //env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop100:9000/flink/checkpoints",true)); String topic = "t1";
Properties prop = new Properties();
prop.setProperty("bootstrap.servers","hadoop110:9092");
prop.setProperty("group.id","con1"); FlinkKafkaConsumer011<String> myConsumer = new FlinkKafkaConsumer011<>(topic, new SimpleStringSchema(), prop); myConsumer.setStartFromGroupOffsets();//默认消费策略 DataStreamSource<String> text = env.addSource(myConsumer); text.print().setParallelism(1); env.execute("StreamingFromCollection"); }
}

五、DataStream API之watermark

介绍:
  • 在使用eventTime的时候如何处理乱序数据?
  • 我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的。虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络延迟等原因,导致乱序的产生,特别是使用kafka的话,多个分区的数据无法保证有序。所以在进行window计算的时候,我们又不能无限期的等下去,必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了。这个特别的机制,就是watermark,watermark是用于处理乱序事件的。
  • watermark可以翻译为水位线
代码:
1、Watermark案例1
package xuwei.tech.streaming.watermark;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector; import javax.annotation.Nullable;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List; /**
*
* Watermark 案例
*
* Created by xuwei.tech.
*/
public class StreamingWindowWatermark { public static void main(String[] args) throws Exception {
//定义socket的端口号
int port = 9000;
//获取运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //设置使用eventtime,默认是使用processtime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置并行度为1,默认并行度是当前机器的cpu数量
env.setParallelism(1); //连接socket获取输入的数据
DataStream<String> text = env.socketTextStream("hadoop100", port, "\n"); //解析输入的数据
DataStream<Tuple2<String, Long>> inputMap = text.map(new MapFunction<String, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> map(String value) throws Exception {
String[] arr = value.split(",");
return new Tuple2<>(arr[0], Long.parseLong(arr[1]));
}
}); //抽取timestamp和生成watermark
DataStream<Tuple2<String, Long>> waterMarkStream = inputMap.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple2<String, Long>>() { Long currentMaxTimestamp = 0L;
final Long maxOutOfOrderness = 10000L;// 最大允许的乱序时间是10s SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
/**
* 定义生成watermark的逻辑
* 默认100ms被调用一次
*/
@Nullable
@Override
public Watermark getCurrentWatermark() {
return new Watermark(currentMaxTimestamp - maxOutOfOrderness);
} //定义如何提取timestamp
@Override
public long extractTimestamp(Tuple2<String, Long> element, long previousElementTimestamp) {
long timestamp = element.f1;
currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
long id = Thread.currentThread().getId();
System.out.println("currentThreadId:"+id+",key:"+element.f0+",eventtime:["+element.f1+"|"+sdf.format(element.f1)+"],currentMaxTimestamp:["+currentMaxTimestamp+"|"+
sdf.format(currentMaxTimestamp)+"],watermark:["+getCurrentWatermark().getTimestamp()+"|"+sdf.format(getCurrentWatermark().getTimestamp())+"]");
return timestamp;
}
}); DataStream<String> window = waterMarkStream.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))//按照消息的EventTime分配窗口,和调用TimeWindow效果一样
.apply(new WindowFunction<Tuple2<String, Long>, String, Tuple, TimeWindow>() {
/**
* 对window内的数据进行排序,保证数据的顺序
* @param tuple
* @param window
* @param input
* @param out
* @throws Exception
*/
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable<Tuple2<String, Long>> input, Collector<String> out) throws Exception {
String key = tuple.toString();
List<Long> arrarList = new ArrayList<Long>();
Iterator<Tuple2<String, Long>> it = input.iterator();
while (it.hasNext()) {
Tuple2<String, Long> next = it.next();
arrarList.add(next.f1);
}
Collections.sort(arrarList);
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
String result = key + "," + arrarList.size() + "," + sdf.format(arrarList.get(0)) + "," + sdf.format(arrarList.get(arrarList.size() - 1))
+ "," + sdf.format(window.getStart()) + "," + sdf.format(window.getEnd());
out.collect(result);
}
});
//测试-把结果打印到控制台即可
window.print(); //注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
env.execute("eventtime-watermark"); } }
2、Watermark案例2
package xuwei.tech.streaming.watermark;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag; import javax.annotation.Nullable;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List; /**
*
* Watermark 案例
*
* sideOutputLateData 收集迟到的数据
*
* Created by xuwei.tech.
*/
public class StreamingWindowWatermark2 { public static void main(String[] args) throws Exception {
//定义socket的端口号
int port = 9000;
//获取运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //设置使用eventtime,默认是使用processtime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置并行度为1,默认并行度是当前机器的cpu数量
env.setParallelism(1); //连接socket获取输入的数据
DataStream<String> text = env.socketTextStream("hadoop100", port, "\n"); //解析输入的数据
DataStream<Tuple2<String, Long>> inputMap = text.map(new MapFunction<String, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> map(String value) throws Exception {
String[] arr = value.split(",");
return new Tuple2<>(arr[0], Long.parseLong(arr[1]));
}
}); //抽取timestamp和生成watermark
DataStream<Tuple2<String, Long>> waterMarkStream = inputMap.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple2<String, Long>>() { Long currentMaxTimestamp = 0L;
final Long maxOutOfOrderness = 10000L;// 最大允许的乱序时间是10s SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
/**
* 定义生成watermark的逻辑
* 默认100ms被调用一次
*/
@Nullable
@Override
public Watermark getCurrentWatermark() {
return new Watermark(currentMaxTimestamp - maxOutOfOrderness);
} //定义如何提取timestamp
@Override
public long extractTimestamp(Tuple2<String, Long> element, long previousElementTimestamp) {
long timestamp = element.f1;
currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
System.out.println("key:"+element.f0+",eventtime:["+element.f1+"|"+sdf.format(element.f1)+"],currentMaxTimestamp:["+currentMaxTimestamp+"|"+
sdf.format(currentMaxTimestamp)+"],watermark:["+getCurrentWatermark().getTimestamp()+"|"+sdf.format(getCurrentWatermark().getTimestamp())+"]");
return timestamp;
}
}); //保存被丢弃的数据
OutputTag<Tuple2<String, Long>> outputTag = new OutputTag<Tuple2<String, Long>>("late-data"){};
//注意,由于getSideOutput方法是SingleOutputStreamOperator子类中的特有方法,所以这里的类型,不能使用它的父类dataStream。
SingleOutputStreamOperator<String> window = waterMarkStream.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))//按照消息的EventTime分配窗口,和调用TimeWindow效果一样
//.allowedLateness(Time.seconds(2))//允许数据迟到2秒
.sideOutputLateData(outputTag)
.apply(new WindowFunction<Tuple2<String, Long>, String, Tuple, TimeWindow>() {
/**
* 对window内的数据进行排序,保证数据的顺序
* @param tuple
* @param window
* @param input
* @param out
* @throws Exception
*/
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable<Tuple2<String, Long>> input, Collector<String> out) throws Exception {
String key = tuple.toString();
List<Long> arrarList = new ArrayList<Long>();
Iterator<Tuple2<String, Long>> it = input.iterator();
while (it.hasNext()) {
Tuple2<String, Long> next = it.next();
arrarList.add(next.f1);
}
Collections.sort(arrarList);
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
String result = key + "," + arrarList.size() + "," + sdf.format(arrarList.get(0)) + "," + sdf.format(arrarList.get(arrarList.size() - 1))
+ "," + sdf.format(window.getStart()) + "," + sdf.format(window.getEnd());
out.collect(result);
}
});
//把迟到的数据暂时打印到控制台,实际中可以保存到其他存储介质中
DataStream<Tuple2<String, Long>> sideOutput = window.getSideOutput(outputTag);
sideOutput.print();
//测试-把结果打印到控制台即可
window.print(); //注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
env.execute("eventtime-watermark"); } }

六、Flink Window和Time详解

①window操作与介绍

介绍:
  1. window介绍:
  • 聚合事件(比如计数、求和)在流上的工作方式与批处理不同。
  • 比如,对流中的所有元素进行计数是不可能的,因为通常流是无限的(无界的)。所以,流上的聚合需要由 window 来划定范围,比如 “计算过去的5分钟” ,或者 “最后100个元素的和” 。
  • window是一种可以把无限数据切割为有限数据块的手段
  • 窗口可以是 时间驱动的 【Time Window】(比如:每30秒)或者 数据驱动的【Count Window】 (比如:每100个元素)。
  1. window类型
  • 窗口通常被区分为不同的类型:
  • tumbling windows:滚动窗口 【没有重叠】
  • sliding windows:滑动窗口 【有重叠】
  • session windows:会话窗口
代码:
1、window 全量聚合
介绍:
  • 全量聚合
  • 等属于窗口的数据到齐,才开始进行聚合计算【可以实现对窗口内的数据进行排序等需求】
  • apply(windowFunction)
  • process(processWindowFunction)
  • processWindowFunction比windowFunction提供了更多的上下文信息。
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector; /**
* window 全量聚合
*/
public class SocketDemoFullCount { public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
port = parameterTool.getInt("port");
}catch (Exception e){
System.err.println("No port set. use default port 9000--java");
port = 9000;
} //获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter); DataStream<Tuple2<Integer,Integer>> intData = text.map(new MapFunction<String, Tuple2<Integer,Integer>>() {
@Override
public Tuple2<Integer,Integer> map(String value) throws Exception {
return new Tuple2<>(1,Integer.parseInt(value));
}
}); intData.keyBy(0)
.timeWindow(Time.seconds(5))
.process(new ProcessWindowFunction<Tuple2<Integer,Integer>, String, Tuple, TimeWindow>() {
@Override
public void process(Tuple key, Context context, Iterable<Tuple2<Integer, Integer>> elements, Collector<String> out)
throws Exception {
System.out.println("执行process。。。");
long count = 0;
for(Tuple2<Integer,Integer> element: elements){
count++;
}
out.collect("window:"+context.window()+",count:"+count);
}
}).print(); //这一行代码一定要实现,否则程序不执行
env.execute("Socket window count"); }
}
2、window增量聚合
介绍:
  • 增量聚合
  • 窗口中每进入一条数据,就进行一次计算
  • reduce(reduceFunction)
  • aggregate(aggregateFunction)
  • sum(),min(),max()
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time; /**
* window 增量聚合
*/
public class SocketDemoIncrAgg { public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
port = parameterTool.getInt("port");
}catch (Exception e){
System.err.println("No port set. use default port 9000--java");
port = 9000;
} //获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter); DataStream<Tuple2<Integer,Integer>> intData = text.map(new MapFunction<String, Tuple2<Integer,Integer>>() {
@Override
public Tuple2<Integer,Integer> map(String value) throws Exception {
return new Tuple2<>(1,Integer.parseInt(value));
}
}); intData.keyBy(0)
.timeWindow(Time.seconds(5))
.reduce(new ReduceFunction<Tuple2<Integer, Integer>>() {
@Override
public Tuple2<Integer, Integer> reduce(Tuple2<Integer, Integer> value1, Tuple2<Integer, Integer> value2) throws Exception {
System.out.println("执行reduce操作:"+value1+","+value2);
return new Tuple2<>(value1.f0,value1.f1+value2.f1);
}
}).print(); //这一行代码一定要实现,否则程序不执行
env.execute("Socket window count"); }
}
8、窗口滑动计算
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.runtime.state.memory.MemoryStateBackend;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector; /**
* 滑动窗口计算
*
* 通过socket模拟产生单词数据
* flink对数据进行统计计算
*
* 需要实现每隔1秒对最近2秒内的数据进行汇总计算
*
*
* Created by xuwei.tech on 2018/10/8.
*/
public class SocketWindowWordCountJava { public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
port = parameterTool.getInt("port");
}catch (Exception e){
System.err.println("No port set. use default port 9000--java");
port = 9000;
} //获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter); // a a c // a 1
// a 1
// c 1
DataStream<WordWithCount> windowCounts = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] splits = value.split("\\s");
for (String word : splits) {
out.collect(new WordWithCount(word, 1L));
}
}
}).keyBy("word")
.timeWindow(Time.seconds(2), Time.seconds(1))//指定时间窗口大小为2秒,指定时间间隔为1秒
.sum("count");//在这里使用sum或者reduce都可以
/*.reduce(new ReduceFunction<WordWithCount>() {
public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception { return new WordWithCount(a.word,a.count+b.count);
}
})*/
//把数据打印到控制台并且设置并行度
windowCounts.print().setParallelism(1); //这一行代码一定要实现,否则程序不执行
env.execute("Socket window count"); } public static class WordWithCount{
public String word;
public long count;
public WordWithCount(){}
public WordWithCount(String word,long count){
this.word = word;
this.count = count;
}
@Override
public String toString() {
return "WordWithCount{" +
"word='" + word + '\'' +
", count=" + count +
'}';
}
} }
window总结与感悟:

②time操作与介绍

介绍:
  • 针对stream数据中的时间,可以分为以下三种
  • Event Time:事件产生的时间,它通常由事件中的时间戳描述。
  • Ingestion time:事件进入Flink的时间
  • Processing Time:事件被处理时当前系统的时间
代码:
1、Processing Time
package myflink.job;

import com.alibaba.fastjson.JSON;
import myflink.model.UrlInfo;
import org.apache.commons.codec.digest.DigestUtils;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010; import java.util.Date;
import java.util.Properties; public class WindowTest { public static void main(String[] args) throws Exception { // 从kafka中获取数据
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Properties properties = new Properties();
properties.put("bootstrap.servers", "localhost:9092");
properties.put("zookeeper.connect", "localhost:2181");
properties.put("group.id", "metric-group");
properties.put("auto.offset.reset", "latest");
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); SingleOutputStreamOperator<UrlInfo> dataStreamSource = env.addSource(
new FlinkKafkaConsumer010<String>(
"testjin",// topic
new SimpleStringSchema(),
properties
)
).setParallelism(1)
// map操作,转换,从一个数据流转换成另一个数据流,这里是从string-->UrlInfo
.map(string -> {
UrlInfo urlInfo = JSON.parseObject(string, UrlInfo.class);
urlInfo.setDomain(urlInfo.generateDomain());
return urlInfo;
}); // 根据domain做keyby
KeyedStream<UrlInfo, String> keyedStream = dataStreamSource.keyBy(new KeySelector<UrlInfo, String>() {
@Override
public String getKey(UrlInfo urlInfo) throws Exception {
return urlInfo.getDomain();
}
}); // 设置时间类型为Processing Time
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); // 使用timeWindow
SingleOutputStreamOperator<UrlInfo> windowReduceStream = keyedStream.timeWindow(Time.seconds(30))
.reduce((ReduceFunction<UrlInfo>) (t1, t2) -> {
UrlInfo urlInfo = new UrlInfo(); // domain都是同一个partition,所以都是同一个
urlInfo.setDomain(t1.getDomain());
urlInfo.setUrl(urlInfo.getDomain() + "/reduce/" + DateFormatUtils.format(new Date(),"yyyy-MM-dd'T'HH:mm:ss"));
urlInfo.setHash(DigestUtils.md5Hex(urlInfo.getUrl())); urlInfo.setCount(t1.getCount() + 1);// 在reduce中做累加计数 return urlInfo;
}).returns(UrlInfo.class); windowReduceStream.addSink(new PrintSinkFunction<>()); env.execute("execute window reduce info");
}
}

 

flink流处理从0到1的更多相关文章

  1. flink 流式处理中如何集成mybatis框架

    flink 中自身虽然实现了大量的connectors,如下图所示,也实现了jdbc的connector,可以通过jdbc 去操作数据库,但是flink-jdbc包中对数据库的操作是以ROW来操作并且 ...

  2. 再也不担心写出臃肿的Flink流处理程序啦,发现一款将Flink与Spring生态完美融合的脚手架工程-懒松鼠Flink-Boot

    目录 你可能面临如下苦恼: 接口缓存 重试机制 Bean校验 等等...... 它为流计算开发工程师解决了 有了它你的代码就像这样子: 仓库地址:懒松鼠Flink-Boot 1. 组织结构 2. 技术 ...

  3. Flink流处理的时间窗口

    Flink流处理的时间窗口 对于流处理系统来说,流入的消息是无限的,所以对于聚合或是连接等操作,流处理系统需要对流入的消息进行分段,然后基于每一段数据进行聚合或是连接等操作. 消息的分段即称为窗口,流 ...

  4. FLINK流计算拓扑任务代码分析<二>

    首先 是 StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment(); 我们在编写 fl ...

  5. FLINK流计算拓扑任务代码分析<一>

    我打算以 flink 官方的 例子 <<Monitoring the Wikipedia Edit Stream>> 作为示例,进行 flink 流计算任务 的源码解析说明. ...

  6. Flink流处理(一)- 状态流处理简介

    1. Flink 简介 Flink 是一个分布式流处理器,提供直观且易于使用的API,以供实现有状态的流处理应用.它能够以fault-tolerant的方式高效地运行在大规模系统中. 流处理技术在当今 ...

  7. 带你玩转Flink流批一体分布式实时处理引擎

    摘要:Apache Flink是为分布式.高性能的流处理应用程序打造的开源流处理框架. 本文分享自华为云社区<[云驻共创]手把手教你玩转Flink流批一体分布式实时处理引擎>,作者: 萌兔 ...

  8. flink 流的合并

    flink 流的合并操作 union union只能合并类型相同的数据,合并的结果仍然是DataStream,结果操作与未合并之前一致. public static void main(String[ ...

  9. Apache Flink 流处理实例

    维基百科在 IRC 频道上记录 Wiki 被修改的日志,我们可以通过监听这个 IRC 频道,来实时监控给定时间窗口内的修改事件.Apache Flink 作为流计算引擎,非常适合处理流数据,并且,类似 ...

随机推荐

  1. SQLyog-证书密钥

    * 用户名: + 随意填写 * 秘钥: + b70d7f66-dac2-4462-bf51-c4e9347da763 + ccbfc13e-c31d-42ce-8939-3c7e63ed5417 + ...

  2. 【转】动态规划之最长公共子序列(LCS)

    [原文链接]最长公共子序列(Longest Common Subsequence,简称 LCS)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划,大部分比较困难的字符串问题都和这个问题一个套 ...

  3. share sdk

    新浪微博                 http://open.weibo.com 腾讯微博                 http://dev.t.qq.com QQ空间             ...

  4. Configure Visual Studio with UNIX end of lines

    As OP states "File > Advanced Save Options", select Unix Line Endings. https://stackove ...

  5. Libra教程之:Transaction的生命周期

    文章目录 Transaction的生命周期 提交一个Transaction 交易入链的详细过程 接收Transaction 和其他Validators共享这个Transaction 区块Proposi ...

  6. HTML模版组件

    1.介绍 BootStrap (最好看的) css js [x] 学习 BootStrap 规则 jQueryUI (美观一般,偏后台.*) css js [x] 学习 jQueryUI 规则 Eas ...

  7. Micropython教程之TPYBoard开发板驱动舵机教程(萝卜学科编程教育)

    大家应该都看到过机器人的手臂啊腿脚啊什么的一抽一抽的在动弹吧...是不是和机械舞一样的有节奏,现在很多机器人模型里面的动力器件都是舵机. 但是大家一般见到的动力器件都是像步进电机,直流电机这一类的动力 ...

  8. Shiro(三):Spring-boot如何集成Shiro(下)

    上一篇文章介绍了shiro在spring-boot中通过filter实现authentication流程(通过设置filterMaps也可以达到authorization的目的):这篇文章主要介绍sp ...

  9. 自定义View之Canvas使用

    自定义View的绘制流程一般都是这样:提前创建好Paint对象,重写onDraw(),把绘制代码卸载ondraw()里面,大致如下: Paint paint = new Paint(); @Overr ...

  10. Jaba_Web--JDBC 删除记录操作模板

    import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedStatement; import ...