题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531

Problem Description
Archaeologists find ruins of Ancient ACM Civilization, and they want to rebuild it.

The ruins form a closed path on an x-y plane, which has n endpoints. The endpoints locate on (x1,y1), (x2,y2), …,(xn,yn) respectively. Endpoint i and endpoint i−1 are adjacent for 1<i≤n, also endpoint 1 and endpoint n are adjacent. Distances between any two adjacent endpoints are positive integers.

To rebuild, they need to build one cylindrical pillar at each endpoint, the radius of the pillar of endpoint i is ri. All the pillars perpendicular to the x-y plane, and the corresponding endpoint is on the centerline of it. We call two pillars are adjacent if and only if two corresponding endpoints are adjacent. For any two adjacent pillars, one must be tangent externally to another, otherwise it will violate the aesthetics of Ancient ACM Civilization. If two pillars are not adjacent, then there are no constraints, even if they overlap each other.

Note that ri must not be less than 0 since we cannot build a pillar with negative radius and pillars with zero radius are acceptable since those kind of pillars still exist in their neighbors.

You are given the coordinates of n endpoints. Your task is to find r1,r2,…,rn which makes sum of base area of all pillars as minimum as possible.

For example, if the endpoints are at (0,0), (11,0), (27,12), (5,12), we can choose (r1, r2, r3, r4)=(3.75, 7.25, 12.75, 9.25). The sum of base area equals to 3.752π+7.252π+12.752π+9.252π=988.816…. Note that we count the area of the overlapping parts multiple times.

If there are several possible to produce the minimum sum of base area, you may output any of them.

 
Input
The first line contains an integer t indicating the total number of test cases. The following lines describe a test case.

The first line of each case contains one positive integer n, the size of the closed path. Next n lines, each line consists of two integers (xi,yi) indicate the coordinate of the i-th endpoint.

1≤t≤100
3≤n≤104
|xi|,|yi|≤104
Distances between any two adjacent endpoints are positive integers.

 
Output
If such answer doesn't exist, then print on a single line "IMPOSSIBLE" (without the quotes). Otherwise, in the first line print the minimum sum of base area, and then print n lines, the i-th of them should contain a number ri, rounded to 2 digits after the decimal point.

If there are several possible ways to produce the minimum sum of base area, you may output any of them.

 
Sample Input
3
4
0 0
11 0
27 12
5 12
5
0 0
7 0
7 3
3 6
0 6
5
0 0
1 0
6 12
3 16
0 12
 
Sample Output
988.82
3.75
7.25
12.75
9.25
157.08
6.00
1.00
2.00
3.00
0.00
IMPOSSIBLE
 
Source
 
Recommend
hujie
题解:对于题目分析可得一些性质:
1:一个圆的半径确定,其他的圆的半径也随之确定.
2:对于n,分奇偶讨论,奇数情况下化简可得:若有解必有唯一解,否则无解.偶数情况下构造二次函数有一变元,从而转换为二次函数的极值问题.
3:限制:半径必须都>=0
#include <bits/stdc++.h>
#define met(a, b) memset(a, b, sizeof(a))
#define ll long long
#define ull unsigned long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef pair<int,int>P;
const int maxn=;
const double eps=1e-;
const double pi=acos(-);
P p[maxn];
double d[maxn],f[maxn];
double dist(P a,P b)
{
return sqrt((a.first-b.first)*(a.first-b.first)+(a.second-b.second)*(a.second-b.second));
}
int main()
{
int T;
cin>>T;
while(T--){
int n;
cin>>n;
for(int i=;i<=n;i++)cin>>p[i].first>>p[i].second;
for(int i=;i<=n;i++){
if(i==n)d[i]=dist(p[i],p[]);
else d[i]=dist(p[i],p[i+]);
}
double maxx=0x3f3f3f3f,minn=;//极值上下限
f[]=;
for(int i = ; i <=n ; i++)
{
f[i] = d[i-] - f[i-];
if(i%== && f[i] < maxx)//若为偶数点,则该圆的半径只能减小这么多(即第一个圆的半径只能增大这么多),更新最大值下限
{
maxx = f[i];
}
if(i%== && (-f[i]) > minn)//若为奇数点,且此时f[i]小与0,则必须第一个圆的半径更新为该值,更新最小值上限
{
minn = -f[i];
}
}
if(minn >= maxx + eps )//无解
{
printf("IMPOSSIBLE\n");
continue;
}
if(n%==){//奇数个点,有解则必有唯一解,否则无解
double x=;//第一个圆的半径x=(d1-d2+d3-d4...)/2,唯一解.
for(int i=;i<=n;i++){
if(i%==)x+=d[i];
else x-=d[i];
}
x/=;
if(x<=minn-eps||x>=maxx+eps){
cout<<"IMPOSSIBLE"<<endl;
continue;
}
double area=;
for(int i=;i<=n;i++){
if(i%==)area+=(f[i]+x)*(f[i]+x);
else area+=(f[i]-x)*(f[i]-x);
}
area*=pi;
printf("%.2f\n",area);
for(int i=;i<=n;i++){
if(i%==)printf("%.2f\n",f[i]+x);
else printf("%.2f\n",f[i]-x);
}
}
else{//偶数情况构造二次函数,y=a*x*x+b*x+c
double now=;
for(int i=;i<=n;i++){
if(i%==)now+=d[i];
else now-=d[i];
}
if(fabs(now)>eps||minn-maxx>eps){
cout<<"IMPOSSIBLE"<<endl;
continue;
}
double a=n;
double b=,c=;
for(int i=;i<=n;i++){
if(i%==){
b+=*f[i];
}
else{
b-=*f[i];
}
c+=f[i]*f[i];
}
double x=-b/(*a);
if(x<minn+eps)x=minn;
if(x>maxx-eps)x=maxx;
double area=a*x*x+b*x+c;
area*=pi;
printf("%.2f\n",area);
for(int i=;i<=n;i++){
if(i%==)printf("%.2f\n",f[i]+x);
else printf("%.2f\n",f[i]-x);
}
}
}
return ;
}

E - Rebuild UVALive - 7187 (二次函数极值问题)的更多相关文章

  1. (转载)SVM-基础(五)

    作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法.确确实实只是简单介绍一 ...

  2. SVM个人学习总结

    SVM个人学习总结 如题,本文是对SVM学习总结,主要目的是梳理SVM推导过程,以及记录一些个人理解. 1.主要参考资料 [1]Corres C. Support vector networks[J] ...

  3. 2015ACM/ICPC亚洲区长春站 E hdu 5531 Rebuild

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  4. HDU 5531 Rebuild (2015长春现场赛,计算几何+三分法)

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  5. Visual Studio 中 Build 和 Rebuild 的区别

    因为之前写的程序比较小,编译起来比较快,所以一直都没有太在意 Build 和 Rebuild 之间的区别,后来发现两个还是有很大不同. Build 只针对在上次编译之后更改过的文件进行编译,在项目比较 ...

  6. 解决 node-gyp rebuild 卡住 的问题

    node-gyp在编译前会首先尝试下载node的headers文件,像这样: gyp http GET https://nodejs.org/download/release/v6.8.1/node- ...

  7. AndroidStudio中make Project、clean Project、Rebuild Project的区别

    1.Make Project:编译Project下所有Module,一般是自上次编译后Project下有更新的文件,不生成apk. 2.Make Selected Modules:编译指定的Modul ...

  8. Rebuild Instance 操作详解 - 每天5分钟玩转 OpenStack(37)

    上一节我们讨论了 snapshot,snapshot 的一个重要作用是对 instance 做备份. 如果 instance 损坏了,可以通过 snapshot 恢复,这个恢复的操作就是 Rebuil ...

  9. UVALive - 4108 SKYLINE[线段树]

    UVALive - 4108 SKYLINE Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug ...

随机推荐

  1. COGS1487 麻球繁衍

    不会做%%http://blog.csdn.net/doom_bringer/article/details/50428503 #include<bits/stdc++.h> #defin ...

  2. 二十二、CI框架之模型别名

    一.在控制器中调用模型时,可以给模型取别名,之后调用时,调用别名就可以了 二.界面显示如下: 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码打赏任意金额给作者(微信号:382477 ...

  3. C#高级编程(第9版) 第08章 委托、lambda表达式和事件 笔记

          本章代码分为以下几个主要的示例文件: 1. 简单委托 2. 冒泡排序 3. lambda表达式 4. 事件示例 5. 弱事件     引用方法 委托是寻址方法的.NET版本.在C++中函数 ...

  4. PAT Advanced 1013 Battle Over Cities (25) [图的遍历,统计连通分量的个数,DFS,BFS,并查集]

    题目 It is vitally important to have all the cities connected by highways in a war. If a city is occup ...

  5. Codeforces 1296D - Fight with Monsters

    题目大意: n 只怪兽,每只的血量为 h[i] ,你的攻击力为 a ,你的对手攻击力为 b 打每只怪兽时,都是你先出手,然后你的对手出手,这样轮流攻击 如果是你给予了怪兽最后一击,你就能得到一分 你还 ...

  6. Mybatis基本配置(一)

    1. Mybatis介绍 MyBatis 是支持普通 SQL查询,存储过程和高级映射的优秀持久层框架.MyBatis 消除了几乎所有的JDBC代码和参数的手工设置以及结果集的检索.MyBatis 使用 ...

  7. 冒泡排序_python

    def popdata(ls): for i in range(len(ls)): for j in range(i+1,len(ls)): if ls[i]>ls[j]: # tmp=ls[i ...

  8. 18 12 18 给服务器添加logging 日志功能

    Python中有个logging模块可以完成相关信息的记录,在debug时用它往往事半功倍 1. 日志级别 日志一共分成5个等级,从低到高分别是: DEBUG INFO WARNING ERROR C ...

  9. Java模板引擎之Freemarker 学习笔记 一

    什么是Freemarker Freemarker是模板引擎,不是Web框架,只是视图层的组件,官网是 https://freemarker.apache.org/ Freemarker原理 数据模型+ ...

  10. nodejs(9)使用arttemplate渲染动态页面

    使用arttemplate渲染动态页面 安装 两个包 npm i art-template express-art-template -S 自定义一个模板引擎 app.engine('自定义模板引擎的 ...