CSP2019 Emiya 家今天的饭
Description:
有 \(n\) 中烹饪方法和 \(m\) 种食材,要求:
- 至少做一种菜
- 所有菜的烹饪方法各不相同
- 同种食材的菜的数量不能超过总菜数的一半
求做菜的方案数。
Solution1:考虑 DP
先容斥一下,答案为忽略第三个条件所得的方案数减去每一种食材超过一半的方案数之和。
忽略掉第三个条件之后答案显然是
\]
减去 1 是去掉一道菜都不做的方案。
枚举每一列超过一半的情况,显然,除这一列外,其他 \(n-1\) 列是一样的。那么对于第 \(col\) 列,设 \(f_{i,j,k}\) 表示前 \(i\) 行,第 \(col\) 列选 \(j\) 个且其他列选 \(k\) 个的方案数。则:
\]
此时的复杂度是 ,\(O(m)\) 的枚举 \(col\) * \(O(n^3)\) 的 \(DP\), = \(O(mn^3)\) ,可以得到 84pts
的好成绩了
Code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 101;
const int M = 2001;
const int mod = 998244353;
ll n,m;
ll s[N],a[N][M],f[N][N][N];
ll ans=1;
void init()
{
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
scanf("%lld",&a[i][j]);
s[i]=(s[i]+a[i][j])%mod;
}
ans=(ans*(s[i]+1))%mod;
}
ans=(mod-1+ans)%mod;
}
int main()
{
init();
for(int col=1;col<=m;++col)
{
memset(f,0,sizeof(f));
f[0][0][0]=1;
for(int i=1;i<=n;++i)
{
for(int j=0;j<=i;++j)
{
for(int k=0;k<=i-j;++k)
{
f[i][j][k]=f[i-1][j][k]+f[i-1][j-1][k]*a[i][col]+f[i-1][j][k-1]*(s[i]-a[i][col]);
f[i][j][k]=(f[i][j][k]%mod+mod)%mod;
}
}
}
for(int j=1;j<=n;++j)
{
for(int k=0;k<=n-j;++k)
{
if(k<j) ans=((ans-f[n][j][k])%mod+mod)%mod;
}
}
}
printf("%lld\n",ans);
return 0;
}
Solution2:考虑优化
然后我们发现我们并不关心j和k的具体值。我们只关心他们的差。所以我们可以把后两维压缩成一维。
设 \(f_{i,j}\) 表示前 \(i\) 行,第 \(col\) 列比其他列多选 \(j\) 个的方案数。则:
\]
此时的复杂度是 ,\(O(m)\) 的枚举 \(col\) * \(O(n^2)\) 的 \(DP\), = \(O(mn^2)\) ,可以得到 100pts
的好成绩了
这里有一个小技巧就是把每个j都加上n,避免数组负下标的出现。
Code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 101;
const int M = 2001;
const int mod = 998244353;
ll n,m;
ll s[N],a[N][M],f[N][N*2];
ll ans=1;
void init()
{
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
scanf("%lld",&a[i][j]);
s[i]=(s[i]+a[i][j])%mod;
}
ans=(ans*(s[i]+1))%mod;
}
ans=(mod-1+ans)%mod;
}
int main()
{
init();
for(int col=1;col<=m;++col)
{
memset(f,0,sizeof(f));
f[0][n]=1;
for(int i=1;i<=n;++i)
{
for(int j=n-i;j<=n+i;++j)//注意dp的范围!
{
f[i][j]=f[i-1][j]+f[i-1][j-1]*a[i][col]+f[i-1][j+1]*(s[i]-a[i][col]);
f[i][j]=(f[i][j]%mod+mod)%mod;
}
}
for(int j=1;j<=n;++j)
{
ans=((ans-f[n][n+j])%mod+mod)%mod;
}
}
printf("%lld\n",ans);
return 0;
}
Question:
DP的取值范围问题还是不清楚。
CSP2019 Emiya 家今天的饭的更多相关文章
- CSP2019 Emiya 家今天的饭 题解
这题在考场上只会O(n^3 m),拿了84分.. 先讲84分,考虑容斥,用总方案减去不合法方案,也就是枚举每一种食材,求用它做超过\(\lfloor \frac{k}{2} \rfloor\) 道菜的 ...
- csp2019 Emiya家今天的饭题解
qwq 由于窝太菜了,实在是不会,所以在题解的帮助下过掉了这道题. 写此博客来整理一下思路 正文 传送 简化一下题意:现在有\(n\)行\(m\)列数,选\(k\)个数的合法方案需满足: 1.一行最多 ...
- 洛谷P5664 Emiya 家今天的饭 问题分析
首先来看一道我编的题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共 ...
- 洛谷P5664 Emiya 家今天的饭 题解 动态规划
首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...
- 【NOIP/CSP2019】D2T1 Emiya 家今天的饭
这个D2T1有点难度啊 原题: 花了我一下午的时间,作为D2T1的确反常 条件很奇怪,感觉不太直观,于是看数据范围先写了个暴力 写暴力的时候我就注意到了之前没有仔细想过的点,烹饪方式必须不同 虽然a很 ...
- 【CSP-S 2019】【洛谷P5664】Emiya 家今天的饭【dp】
题目 题目链接:https://www.luogu.org/problem/P5664 Emiya 是个擅长做菜的高中生,他共掌握 \(n\) 种烹饪方法,且会使用 \(m\) 种主要食材做菜.为了方 ...
- 【CSP-S 2019】D2T1 Emiya 家今天的饭
Description 传送门 Solution 算法1 32pts 爆搜,复杂度\(O((m+1)^n)\) 算法2 84pts 裸的dp,复杂度\(O(n^3m)\) 首先有一个显然的性质要知道: ...
- Emiya 家今天的饭
\(dp_{i,j,k}\)表示前\(i\)种烹饪方法,假设最多的是食材\(j\),食材\(j\)比其他食材多\(k\)次出现 其中\(i \in [1,n],j \in [1,m],k \in [- ...
- 【JZOJ6433】【luoguP5664】【CSP-S2019】Emiya 家今天的饭
description analysis 首先可以知道不符合要求的食材仅有一个,于是可以容斥拿总方案数减去选不合法食材的不合法方案数 枚举选取哪一个不合法食材,设\(f[i][j]\)表示到第\(i\ ...
随机推荐
- STM32F103之USART学习记录
1.USART的主要特性 1)名称:串行异步通信接口 2)全双工.异步通信 3)发送和接收速率最高可达4.5MBits/s 4)可编程数据长度8或9bits 5)可配置的停止位:支持1或2位停止位 6 ...
- [采坑记录] OneDrive同步失败 不能自动上传 不能同步 不能登陆
虽然OneDrive送的空间并不大 但是用来传文档什么的还是够了 但是国内各种不舒服 比如说登陆不上(其他的微软系应用解决方法同理) 原因是因为DNS污染的问题 默认电脑链接上网络之后 DNS是路由器 ...
- python第四节【函数】
函数 1. 函数 def greet_user(): """显示简单的问候语""" print("Hello") gre ...
- 《TCP/IP网络编程》读书笔记
1.Windows 下的 socket 程序和 Linux 思路相同,但细节有所差别(1) Windows 下的 socket 程序依赖 Winsock.dll 或 ws2_32.dll,必须提前加载 ...
- Navicat连接两个不同机子上的mysql数据库,端口用换吗?--不用
经过了上一篇的努力,成功的连上了远程的mysql数据库 dos 命令行下的成功连接 在用Navicat连接的时候要注意: 端口仍然是3306,而不用去更改,并不会和上面的本机的Mysql连接使用的端口 ...
- centos7一步一步搭建docker tomcat 及重点讲解
系统环境:centos7.7 (VMware中) image版本:tomcat:8-jdk8-openjdk (截止2020.01.10该系列版本) 安装步骤参考文章:https://www.jian ...
- 00-Docker基本安装
目录 00-Docker基本安装 参考 安装与配置 启动与测试 00-Docker基本安装 Docker Version: 19.03.5
- laravel 创建授权策略
用户只能编辑自己的资料 在完成对未登录用户的限制之后,接下来我们要限制的是已登录用户的操作,当 id 为 1 的用户去尝试更新 id 为 2 的用户信息时,我们应该返回一个 403 禁止访问的异常.在 ...
- spark报错 java.lang.NoClassDefFoundError: scala/xml/MetaData
代码: 报错信息: java.lang.NoClassDefFoundError: scala/xml/MetaData 原因:确失jar包 <dependency> <groupI ...
- 页面阻止某个按键的键盘事件(event.stopPropagation与event.preventDefault的区别及如何兼容IE8)
http://blog.csdn.net/rocklee/article/details/53160656