1、集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常广泛。生活中其实也普遍存在集成学习的方法,比如买东西找不同的人进行推荐,病情诊断进行多专家会诊等,考虑各方面的意见进行最终的综合的决策,这样得到的结果可能会更加的全面和准确。另外,sklearn中也提供了集成学习的接口voting classifier。

sklearn中具体调用集成学习方法的具体代码如下:

#使用集成学习的方法进行数据训练和预测
#1-1导入原始基础数据集并且进行数据的预处理
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
x,y=datasets.make_moons(n_samples=500,noise=0.3,random_state=42) #生成数据默认为100个数据样本
print(x.shape)
print(y.shape)
plt.figure()
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=42)
#导入sklearn中的不同机器学习算法
#1逻辑回归算法
from sklearn.linear_model import LogisticRegression
log_reg=LogisticRegression()
log_reg.fit(x_train,y_train)
print(log_reg.score(x_test,y_test))
#2支撑向量机SVM算法
from sklearn.svm import SVC
svc_reg=SVC()
svc_reg.fit(x_train,y_train)
print(svc_reg.score(x_test,y_test))
#KNN算法
from sklearn.neighbors import KNeighborsClassifier
knn_reg=KNeighborsClassifier(n_neighbors=3)
knn_reg.fit(x_train,y_train)
print(knn_reg.score(x_test,y_test))
#决策树算法
from sklearn.tree import DecisionTreeClassifier
tree_reg=DecisionTreeClassifier()
tree_reg.fit(x_train ,y_train)
print(tree_reg.score(x_test,y_test))
y_predict1=log_reg.predict(x_test)
y_predict2=knn_reg.predict(x_test)
y_predict3=svc_reg.predict(x_test)
y_predict4=tree_reg.predict(x_test)
y_predict=np.array(y_predict1+y_predict2+y_predict3+y_predict4>=3,dtype="int") #自己简单采用集成学习的方法来进行相应的预测
from sklearn.metrics import accuracy_score
score=accuracy_score(y_predict,y_test)
print(score)
#使用sklearn中的集成学习接口进行相应的训练和预测—hard voting是投票时少数服从多数的原则(可以先把每个算法调到最好的结果,然后再用集成学习的算法进行预测)
from sklearn.ensemble import VotingClassifier
vote_reg=VotingClassifier(estimators=[
("log_cla",LogisticRegression()),
("svm_cla",SVC()),
("knn",KNeighborsClassifier()),
("tree",DecisionTreeClassifier(random_state=666))
],voting="hard")
vote_reg.fit(x_train,y_train)
print(vote_reg.score(x_test,y_test))
#使用sklearn中的集成学习接口进行相应的训练和预测—soft voting是投票时不同算法不同权重的原则(可以先把每个算法调到最好的结果,然后再用集成学习的算法进行预测)
from sklearn.ensemble import VotingClassifier
vote_reg1=VotingClassifier(estimators=[
("log_cla",LogisticRegression()),
("svm_cla",SVC(probability=True)), #SVC算法本来是计算不了概率的,但是经过一定的改进便可以计算概率,需要使得probability=true
("knn",KNeighborsClassifier()),
("tree",DecisionTreeClassifier(random_state=666))
],voting="soft")
vote_reg1.fit(x_train,y_train)
print(vote_reg1.score(x_test,y_test))
#采用有放回bagging和无放回pasting两种不同的方式来进行集成学习的训练(bootstrap决定有无放回,true代表有放回)
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
x,y=datasets.make_moons(n_samples=500,noise=0.3,random_state=42) #生成数据默认为100个数据样本
print(x.shape)
print(y.shape)
plt.figure()
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=42)
#使用bagging的方式进行集成学习
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
bag_reg=BaggingClassifier(DecisionTreeClassifier(),n_estimators=500,max_samples=100,bootstrap=True)
bag_reg.fit(x_train,y_train)
print(bag_reg.score(x_test,y_test))
#采用oob的方式对于训练模型进行数据的测试验证oob_score=true
bag_reg1=BaggingClassifier(DecisionTreeClassifier(),n_estimators=500,max_samples=100,bootstrap=True,oob_score=True,n_jobs=-1)
bag_reg1.fit(x_train,y_train)
print(bag_reg1.score(x_test,y_test))
print(bag_reg1.oob_score_)
#采用随机特征数目的方式对于训练模型进行数据的测试验证 max_features=样本随机特征数(主要用于图像识别领域数据样本特征比较多的数据集)
bag_reg2=BaggingClassifier(DecisionTreeClassifier(),n_estimators=500,max_samples=100,bootstrap=True,oob_score=True,n_jobs=-1,max_features=1,bootstrap_features=True)
bag_reg2.fit(x_train,y_train)
print(bag_reg1.score(x_test,y_test))
print(bag_reg1.oob_score_)
#使用随机森林的算法进行集成学习的训练和预测
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
x,y=datasets.make_moons(n_samples=500,noise=0.3,random_state=42) #生成数据默认为100个数据样本
print(x.shape)
print(y.shape)
plt.figure()
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=42)
from sklearn.ensemble import RandomForestClassifier
rf1=RandomForestClassifier(n_estimators=500,random_state=666,oob_score=True,n_jobs=-1) #利用随机森林的方法用取不到的数据进行相应的训练
rf1.fit(x,y)
print(rf1.oob_score_)
rf1=RandomForestClassifier(n_estimators=500,random_state=666,max_leaf_nodes=16,oob_score=True,n_jobs=-1)
rf1.fit(x,y)
print(rf1.oob_score_)
#使用极其随机森林的算法进行集成学习的训练和预测(extra tree是指特征随机,并且节点阈值也随机,使得决策树之间差异更大,增加了随机性,降低了过拟合,不过也增加了一定的偏差)
from sklearn.ensemble import ExtraTreesClassifier
et=ExtraTreesClassifier(n_estimators=500,n_jobs=-1,bootstrap=True,oob_score=True)
et.fit(x,y)
print(et.oob_score_)
###利用集成学习解决回归问题
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import BaggingRegressor
#回归问题和分类问题是一致的,超参数也是统一的,使用参照以上分类算法,只不过其输出结果是一个数值而非类别 #集成学习的第二种类:Boosting集成多个模型,模型之间是用关系的,它们均在增强整体的效果,主要有Ada Boosting 和Gradient Boosting
#第一种boosting的方式Ada Boosting方式
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
x,y=datasets.make_moons(n_samples=500,noise=0.3,random_state=666) #生成数据默认为100个数据样本
print(x.shape)
print(y.shape)
plt.figure()
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
ada_boost=AdaBoostClassifier(DecisionTreeClassifier(max_depth=2,min_samples_leaf=10,max_leaf_nodes=20),n_estimators=1000,random_state=666)
ada_boost.fit(x_train,y_train)
print(ada_boost.score(x_test,y_test))
#第二种boosting方式:Gradient Boosting,利用特定的机器学习算法对于数据进行训练和预测,然后将模型误差再进行训练,然后再对误差的误差训练,依次叠加,最终得到的训练结果就是最终的结果
from sklearn.ensemble import GradientBoostingClassifier
gb_boost=GradientBoostingClassifier(max_depth=5,n_estimators=3000)
gb_boost.fit(x_train,y_train)
print(gb_boost.score(x_test,y_test))
#第三种集成学习的思路stacking集成学习的方法:多模型多层次的模型融合集成学习方法 最终的运行结果如下所示:


sklearn中调用集成学习算法的更多相关文章

  1. sklearn中调用PCA算法

    sklearn中调用PCA算法 PCA算法是一种数据降维的方法,它可以对于数据进行维度降低,实现提高数据计算和训练的效率,而不丢失数据的重要信息,其sklearn中调用PCA算法的具体操作和代码如下所 ...

  2. 集成学习算法汇总----Boosting和Bagging(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  3. 集成学习算法总结----Boosting和Bagging

    1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于B ...

  4. 集成学习算法总结----Boosting和Bagging(转)

    1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于B ...

  5. Ensemble_learning 集成学习算法 stacking 算法

    原文:https://herbertmj.wikispaces.com/stacking%E7%AE%97%E6%B3%95 stacked 产生方法是一种截然不同的组合多个模型的方法,它讲的是组合学 ...

  6. scikitlearn库中调用k-近邻算法的操作步骤

    1.k近邻算法可以说是唯一一个没有训练过程的机器学习算法,它含有训练基础数据集,但是是一种没有模型的算法,为了将其和其他算法进行统一,我们把它的训练数据集当做它的模型本身.2.在scikitlearn ...

  7. 集成学习算法——adaboost

    adaboost是boosting类集成学习方法中的一种算法,全称是adaptive boost,表示其是一种具有自适应性的算法,这个自适应性体现在何处,下面来详细说明. 1.adaboost算法原理 ...

  8. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  9. 使用sklearn进行集成学习——理论

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? ...

随机推荐

  1. jq鼠标移入移除事件

    mouseover与mouseenter 不论鼠标指针穿过被选元素或其子元素,都会触发 mouseover 事件.只有在鼠标指针穿过被选元素时,才会触发 mouseenter 事件. mouseout ...

  2. 【Python与线程】

    "   目录 一.全局解释器锁GIL 二.Python线程模块的选择 三.线程的创建 三.锁机制 四.信号量 五.事件 六.条件 七.定时器 八.线程队列 九.线程池 补充:线程安全 imp ...

  3. C的精神

    信任程序员 不要妨碍程序员做需要做的事 保持语言精练简单 只提供一种方法执行一项操作 让程序运行更快, 即使不能保证其可移植性 在最后一点上, 标准委员会的用意是: 作为实现, 应该针对目标计算机来定 ...

  4. Snuke's Coloring 2-1

    There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper right corner ...

  5. map或者对象转换

    map或者对象转换为具有相同字段的对象 List<Example> errorCodeExcelBeanList = JSONObject.parseArray(((JSONObject) ...

  6. 用js实现复制内容到操作系统粘贴板(兼容IE、谷歌、火狐等浏览器)

    一.如果只考虑IE浏览器,可以直接用原声js实现 if(window.clipboardData){ //清空操作系统粘贴板 window.clipboardData.clearData(); //将 ...

  7. 3_08_MSSQL课程_Ado.Net_子查询

    子查询 1.把一个查询结果作为一个表来使用,就是子查询. 2.把一个查询结果作为一个 表达式进行使用就是子查询. (分页Sql)

  8. 中国5G,如何避免重复投资?

    前不久,工信部正式向中国移动.中国联通.中国电信发放5G商用牌照,此举意味着中国提前启动5G商用计划,随之而来的,将会是运营商.设备商大规模的投资.相关数据机构预测,三大运营商2019年预计会投入30 ...

  9. 二十二、mysql 执行计划与存储引擎

    1.explain(执行计划)中涉及的各字段理解1.1) select_type列的取值及含义:    SIMPLE                 :简单的SELECT语句(不包括UNION操作或子 ...

  10. 洛谷 P1082 同余方程(同余&&exgcd)

    嗯... 题目链接:https://www.luogu.org/problem/P1082 这道题很明显涉及到了同余和exgcd的问题,下面推导一下: 首先证明有解情况: ax + by = m有解的 ...