区间DP, 考虑设\(dp[i][j][t]\)为已经关掉了\([i,j]\)的电灯, 人在t端点处时的最小代价

可以推出方程:

\[dp[i+1][j][0]+(p[n]-p[j]+p[i])*(loc[i+1]-loc[i]) -> dp[i][j][0]
\]

\[dp[i][j-1][0]+(p[n]-p[j-1]+p[i-1])*(loc[j]-loc[i]) -> dp[i][j][1]
\]

\[dp[i][j-1][1]+(p[n]-p[j-1]+p[i-1])*(loc[j]-loc[j-1]) -> dp[i][j][1]
\]

\[dp[i+1][j][1]+(p[n]-p[j]+p[i])*(loc[j]-loc[i]) -> dp[i][j][0]
\]

直接DP... 且慢, 顺序是什么...... 好像很麻烦的样子......

但是其实可以不用考虑顺序问题的, 一位超强的选手\(wyx\)说过:

\(\text{「记忆化搜索, 就是用来解决这种顺序有关的DP的」}\)

如果采用记忆化搜索, 啥都不用想一顿码, 码完AC, 极其快乐, 比那些DP不知道高到哪里去了

code:

#include<bits/stdc++.h>
using namespace std; /*Copyright [tyqtyq](http://oiertyq.github.io). All rights served.*/
#define f(i,x,y) for(int i=x,i##end=y;i<=i##end;++i)
#define d(i,x,y) for(int i=x,i##end=y;i>=i##end;--i)
#define ri register int
#define ll long long
#define il inline
namespace intio{char ch; int read(){ ri x=0,f=1; while(!isdigit((ch=getchar()))) f=ch=='-'?-1:1; while(isdigit(ch)) x=x*10+ch-'0', ch=getchar(); return x*f; } void read(int& x) {x = read();}}; using namespace intio;
int max(int x, int y) {return x>y?x:y;} int min(int x, int y) {return x<y?x:y;}
#define _ 100
int loc[_], p[_];
int dp[_][_][2] ;
int n, c;
// dp[i][j][t]: 已经关掉了[i,j]的电灯, 人在t端点处
// dp[i+1][j][0]+(p[n]-p[j]+p[i])*(loc[i+1]-loc[i]) -> dp[i][j][0]
// dp[i][j-1][0]+(p[n]-p[j-1]+p[i-1])*(loc[j]-loc[i]) -> dp[i][j][1]
// dp[i][j-1][1]+(p[n]-p[j-1]+p[i-1])*(loc[j]-loc[j-1]) -> dp[i][j][1]
// dp[i+1][j][1]+(p[n]-p[j]+p[i])*(loc[j]-loc[i]) -> dp[i][j][0]
void work(int i,int j){
if(i>j) return ;
if(dp[i+1][j][0]==0x3f3f3f3f) work(i+1, j);
if(dp[i][j-1][0]==0x3f3f3f3f) work(i, j-1);
dp[i][j][0] = min(dp[i+1][j][0]+(p[n]-p[j]+p[i])*(loc[i+1]-loc[i]), dp[i+1][j][1]+(p[n]-p[j]+p[i])*(loc[j]-loc[i]));
dp[i][j][1] = min(dp[i][j-1][0]+(p[n]-p[j-1]+p[i-1])*(loc[j]-loc[i]), dp[i][j-1][1]+(p[n]-p[j-1]+p[i-1])*(loc[j]-loc[j-1]));
}
int main(){
memset(dp, 0x3f, sizeof(dp)) ;
scanf("%d%d",&n,&c) ;
f(i,1,n) scanf("%d%d", &loc[i], &p[i]), p[i] += p[i-1] ;
dp[c][c][1] = dp[c][c][0] = 0 ;
work(1,n);
cout<<min(dp[1][n][1], dp[1][n][0]) ;
return 0;
}

题解 P1220 【关路灯】的更多相关文章

  1. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  2. 洛谷——P1220 关路灯

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉 ...

  3. P1220 关路灯——区间dp

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一 ...

  4. 洛谷P1220 关路灯

    洛谷1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关 ...

  5. 洛谷P1220 关路灯(区间dp)

    关路灯 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯.为了给村里节 ...

  6. P1220 关路灯(提高+)

    以下内容转自z2415445508 只是为了方便自己复习而已 题目传送门-->关路灯 我是一条憨憨的分割线 关灯不需要额外的时间,经过了灯就关了.但是可能折返回去关某一个大灯会比继续往下走关接下 ...

  7. 洛谷P1220 关路灯 题解 区间DP

    题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...

  8. 洛谷P1220关路灯题解

    题目 此题是一个状态转移方程还算比较多的一个区间DP,这个题也能启示我们如果某个状态不能够很好地解决问题,那么不妨试试再加一维,而且如果转移顺序不确定的话,可以试试记忆化搜索,说不定就可以比较容易的写 ...

  9. 洛谷 P1220 关路灯 (贪心+区间dp)

    这一道题我一直在想时间该怎么算. 看题解发现有个隐藏的贪心. 路径一定是左右扩展的,左右端点最多加+1(我竟然没发现!!) 这个性质非常重要!! 因此这道题用区间dp f[i][j]表示关完i到j的路 ...

  10. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

随机推荐

  1. mysql8 my.ini

    [mysqld] ; 设置3306端口 port= ; 设置mysql的安装目录 basedir=D:/wamp64/bin/mysql/mysql8.0.11 ; 设置mysql数据库的数据的存放目 ...

  2. Make the PE file consistent when code not changed

    参考:http://www.mouseos.com/assembly/06.html 参考:http://www.cnblogs.com/tk091/archive/2012/04/18/245617 ...

  3. python 文件与文件夹相关

    1.判断文件夹是否存在,不存在则创建文件夹: if not os.path.exists(path): os.makedirs(path) 2.判断文件是否存在,存在就删除: os.path.exis ...

  4. Problem J. Joseph’s Problem 约瑟夫问题--余数之和

    链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...

  5. POJ 2305:Basic remains 进制转换

    Basic remains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5221   Accepted: 2203 Des ...

  6. 微服务中springboot启动问题

    log4j:WARN No appenders could be found for logger (org.springframework.web.context.support.StandardS ...

  7. Redis 详解 (三) redis的五大数据类型详细用法

    目录 1.string 数据类型 2.hash 数据类型 3.list 数据类型 4.set 数据类型 5.zset 数据类型 6.系统相关命令 7.key 相关命令 我们说 Redis 相对于 Me ...

  8. xv6 锁

    在xv6 中锁对象是 spinlock,spinlock中的locked为1的时候表示被占用,为0的时候锁空闲. struct spinlock { uint locked; // Is the lo ...

  9. 2-Java基本数据类型和运算符

    目录 Java基本类型 Java数据类型转换 Java运算符 1.Java基本类型 1.1.boolean布尔 - 只有true和false两种值,在内存中占1bits(位),默认是false 1.2 ...

  10. 158-PHP strstr函数输出第一次出现字符串的位置到字符串结尾的所有字符串

    <?php $str='PHP is a very good programming language!'; //定义一个字符串 echo '第一次出现字母l的位置到字符串结尾的所有字符串'.s ...