ACM思维题训练集合

Furik and Rubik love playing computer games. Furik has recently found a new game that greatly interested Rubik. The game consists of n parts and to complete each part a player may probably need to complete some other ones. We know that the game can be fully completed, that is, its parts do not form cyclic dependencies.

Rubik has 3 computers, on which he can play this game. All computers are located in different houses. Besides, it has turned out that each part of the game can be completed only on one of these computers. Let's number the computers with integers from 1 to 3. Rubik can perform the following actions:

Complete some part of the game on some computer. Rubik spends exactly 1 hour on completing any part on any computer.
Move from the 1-st computer to the 2-nd one. Rubik spends exactly 1 hour on that.
Move from the 1-st computer to the 3-rd one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 1-st one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 3-rd one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 1-st one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 2-nd one. Rubik spends exactly 2 hours on that.
Help Rubik to find the minimum number of hours he will need to complete all parts of the game. Initially Rubik can be located at the computer he considers necessary.
Input
The first line contains integer n (1 ≤ n ≤ 200) — the number of game parts. The next line contains n integers, the i-th integer — ci (1 ≤ ci ≤ 3) represents the number of the computer, on which you can complete the game part number i. Next n lines contain descriptions of game parts. The i-th line first contains integer ki (0 ≤ ki ≤ n - 1), then ki distinct integers ai, j (1 ≤ ai, j ≤ n; ai, j ≠ i) — the numbers of parts to complete before part i. Numbers on all lines are separated by single spaces. You can assume that the parts of the game are numbered from 1 to n in some way. It is guaranteed that there are no cyclic dependencies between the parts of the game.
Output
On a single line print the answer to the problem.
Examples
Input
1
1
0
Output
1
Input
5
2 2 1 1 3
1 5
2 5 1
2 5 4
1 5
0
Output
7
Note
Note to the second sample: before the beginning of the game the best strategy is to stand by the third computer. First we complete part 5. Then we go to the 1-st computer and complete parts 3 and 4. Then we go to the 2-nd computer and complete parts 1 and 2. In total we get 1+1+2+1+2, which equals 7 hours.

题解:

现在有三个工作站,有三种工作,每种工作需要完成前置任务才能进行当前工作,三个工作站之间转换需要花费时间,问将所有任务都完成需要花费的最少时间。一开始可以在任意一个工作站开始工作。

贪心一下,如果在一台电脑上能够完成多项任务,就让他都完成,然后在考虑转移,转移的话无非就是1-2

2-3 3-1 还有就是 3-2 2-1 1-3这种,一种是1另一种是2,所以我们不走1-3这种用两段1-2 2-3代替花费相同,这样在进行拓扑排序完事了。

吐槽一下数据思路错了也能过。

后来想了一下如果一开始三台电脑都能开始一个工作,那么先从哪台开始呢,不知道,所以三台为起始点进行拓扑选最小的的答案输出。

#include <bits/stdc++.h>
using namespace std;
vector<int> mp[15000];
int d[5][5], a[250], deg[250], temp[205], n;
int tooper(int ss)
{
queue<int> s;
int ans = n, cnt = 0, now = ss;
while (1)
{
while (1)
{
int flag = 0;
for (int i = 1; i <= n; ++i)
{
if (deg[i] == 0 && a[i] == now)
{
flag = 1;
deg[i] = -1;
cnt++;
for (int j = 0; j < mp[i].size(); ++j)
{
int v = mp[i][j];
deg[v]--;
}
}
}
if (flag == 0)
break;
}
if (cnt == n)
break;
now++;
ans++;
now = (now == 4 ? 1 : now);
}
return ans;
} int main()
{
d[1][1] = d[2][2] = d[3][3] = 0;
d[1][2] = d[2][3] = d[3][1] = 1;
d[2][1] = d[3][2] = d[1][3] = 0x3f3f3f3f;
cin>>n;
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = 1; i <= n; ++i)
{
int k;
scanf("%d", &k);
for (int j = 1; j <= k; ++j)
{
int x;
scanf("%d", &x);
mp[x].push_back(i);
deg[i]++;
}
}
for (int i = 1; i <= n; ++i)
temp[i] = deg[i];
int ans = 0x3f3f3f3f;
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(1));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(2));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(3));
printf("%d\n", ans);
}

CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)的更多相关文章

  1. ZOJ 4124 拓扑排序+思维dfs

    ZOJ - 4124Median 题目大意:有n个元素,给出m对a>b的关系,问哪个元素可能是第(n+1)/2个元素,可能的元素位置相应输出1,反之输出0 省赛都过去两周了,现在才补这题,这题感 ...

  2. HDU 6073 Matching In Multiplication(拓扑排序+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...

  3. luogu 3441 [POI2006]MET-Subway 拓扑排序+思维

    Description 给出一棵N个结点的树,选择L条路径,覆盖这些路径上的结点,使得被覆盖到的结点数最多. Input 第一行两个正整数N.L(2 <= N <= 1,000,000, ...

  4. 2019牛客暑期多校训练营(第五场)H-subsequence 2 (拓扑排序+思维)

    >传送门< 题意: 给你几组样例,给你两个字符a,b,一个长度len,一个长度为len的字符串str,str是字符串s的子串 str是s删掉除过a,b两字符剩下的子串,现在求s,多种情况输 ...

  5. 洛谷 P4017 最大食物链计数 (拓扑排序,思维)

    题意:有\(n\)个点,连\(m\)条边,求最多有多少条食物链(从头走到为有多少条路径). 题解:之前抽了点时间把拓扑排序补完了,这题其实就是一道拓扑排序的裸题.关于拓扑排序: ​ 1.首先,我们用\ ...

  6. [CF #290-C] Fox And Names (拓扑排序)

    题目链接:http://codeforces.com/contest/510/problem/C 题目大意:构造一个字母表,使得按照你的字母表能够满足输入的是按照字典序排下来. 递归建图:竖着切下来, ...

  7. CodeForces - 721C 拓扑排序+dp

    题意: n个点m条边的图,起点为1,终点为n,每一条单向边输入格式为: a,b,c     //从a点到b点耗时为c 题目问你最多从起点1到终点n能经过多少个不同的点,且总耗时小于等于t 题解: 这道 ...

  8. 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题

    Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...

  9. Sorting It All Out (拓扑排序+思维)

    An ascending sorted sequence of distinct values is one in which some form of a less-than operator is ...

随机推荐

  1. MTK Android Camera运行流程

    Android Camera 运行流程 总体架构1.CameraService服务的注册2.Client端的应用层到JNI层Camera App-JNI3.Client到Service的连接4.HAL ...

  2. Flutter 实现网易云音乐字幕

    老孟导读:没有接触过音乐字幕方面知识的话,会对字幕的实现比较迷茫,什么时候转到下一句?看了这篇文章,你就会明白字幕so easy. 先来一张效果图: 字幕格式 目前市面上有很多种字幕格式,比如srt, ...

  3. MySQL中的事务和MVCC

    本篇博客参考掘金小册--MySQL 是怎样运行的:从根儿上理解 MySQL 以及极客时间--MySQL实战45讲. 虽然我们不是DBA,可能对数据库没那么了解,但是对于数据库中的索引.事务.锁,我们还 ...

  4. Python爬虫 ---scrapy框架初探及实战

    目录 Scrapy框架安装 操作环境介绍 安装scrapy框架(linux系统下) 检测安装是否成功 Scrapy框架爬取原理 Scrapy框架的主体结构分为五个部分: 它还有两个可以自定义下载功能的 ...

  5. Powershell抓取网页信息

    一般经常使用invoke-restmethod和invoke-webrequest这两个命令来获取网页信息,如果对象格式是json或者xml会更容易 1.invoke-restmethod 我们可以用 ...

  6. CORS漏洞的学习与分析

    同源策略 同源策略(Same origin policy)是一种约定,一种非常重要的安全措施,也是最基本的安全功能,它禁止了来自不同源的脚本对当前页面的读取或修改,从而限制了跨域访问甚至修改资源,防止 ...

  7. AJ学IOS 之小知识之xcode6自动提示图片插件 KSImageNamed的安装

    AJ分享,必须精品 一:首先看效果 KSImageNamed是让XCode能预览项目中图片的插件 很牛逼,据说写这个插件的牛人在日本~ 主要针对imageNamed:方法 效果如图: 安装: 首先需要 ...

  8. JUC并发编程基石AQS源码之结构篇

    前言 AQS(AbstractQueuedSynchronizer)算是JUC包中最重要的一个类了,如果你想了解JUC提供的并发编程工具类的代码逻辑,这个类绝对是你绕不过的.我相信如果你是第一次看AQ ...

  9. react性能优化最佳实践

    1.PureComponent 的使用场景 PureComponent 和 Component 的区别是,PureComponent 自带 shouldComponentUpdate 生命周期函数,会 ...

  10. [安全] Kali Linux安装TheFatRat

    一.解决访问国外网络的问题 由于字符敏感,以下所有vray的第二位都需要加上"2". 1.使用vray客户端 前提条件:拥有一个海外vray服务器提供socks5代理. 1)下载v ...