【线段树基础】NKOJ 1321 数列操作
|
问题描述
假设有一列数{Ai}(1≤i≤n),支持如下两种操作:
将Ak的值加D。(k, D是输入的数)
输出As+As+1+…+At。(s, t都是输入的数,S≤T)
输入格式
第一行一个整数n,
第二行为n个整数,表示{Ai}的初始值≤10000。
第三行为一个整数m,表示操作数
下接m行,每行描述一个操作,有如下两种情况:
ADD k d (表示将Ak加d,1<=k<=n,d为数,d的绝对值不超过10000)
SUM s t (表示输出As+…+At)
输出格式
对于每一个SUM提问,输出结果
样例输入 1
5
1 2 3 2 4
5
SUM 1 2
SUM 1 5
ADD 1 2
SUM 1 2
SUM 1 5
样例输出 1
3
12
5
14
样例输入 2
10
44 37 20 29 13 8 32 14 46 29
8
ADD 5 3
SUM 1 8
SUM 4 6
ADD 3 18
SUM 2 5
ADD 4 15
SUM 1 7
SUM 5 10
样例输出 2
200
53
120
219
145
提示
M,N<=100000
#include<cstdio>
#define maxn 100003
int n, m;
int A[maxn];
char op[];
struct node {
int a, b, v;
}Tree[maxn << ];
namespace Ironclad_Programming {
#define R register int
#define For(i, s, n) for (R i = s; i <= n; ++ i)
namespace ini {
void MakeTree(int p, int x, int y) {
Tree[p].a = x;
Tree[p].b = y;
if (x < y) {
MakeTree(p * , x, ((x + y) >> ));
MakeTree(p * + , ((x + y) >> ) + , y);
Tree[p].v = Tree[p * ].v + Tree[p * + ].v;
} else Tree[p].v = A[x];
}
void executive() {
scanf("%d", &n);
For (i, , n)scanf("%d", &A[i]);
MakeTree(, , n);
}
}
namespace solve {
void Add(int p, int k, int d) {
Tree[p].v += d;
if (Tree[p].a == Tree[p].b)return;
if (Tree[p * ].a <= k && Tree[p * ].b >= k)Add(p * , k, d);
if (Tree[p * + ].a <= k && Tree[p * + ].b >= k)Add(p * + , k, d);
}
int GetSum(int p, int s, int t) {
if (t < Tree[p].a || s > Tree[p].b)return ;
if (s <= Tree[p].a && Tree[p].b <= t)return Tree[p].v;
else {
int Total = ;
Total += GetSum(p * , s, t);
Total += GetSum(p * + , s, t);
return Total;
}
}
void executive() {
scanf("%d", &m);
For (i, , m) {
scanf("%s", op);
if (op[] == 'A') {
int k, d;
scanf("%d%d", &k, &d);
Add(, k, d);
} else {
int s, t;
scanf("%d%d", &s, &t);
printf("%d\n", GetSum(, s, t));
}
}
}
}
void Main() {
ini::executive();
solve::executive();
}
#undef R
#undef For
}
int main() {
Ironclad_Programming::Main();
return ;
}
【线段树基础】NKOJ 1321 数列操作的更多相关文章
- P1198 [JSOI2008]最大数(线段树基础)
P1198 [JSOI2008]最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制: ...
- Poj 3246 Balanced Lineup(线段树基础)
依旧是线段树基础题 询问区间的最大值和最小值之差,只有询问,没有插入删除.继续理解基础线段树 #include <iostream> #include <algorithm> ...
- [JSOI2008]最大数(线段树基础)
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制: L 不超过当前数列的长度.(L > ...
- 线段树基础模板&&扫描线
线段树的单点更新+区间求和 hdu1166敌兵布阵 Input 第一行一个整数T,表示有T组数据. 每组数据第一行一个正整数N(N<=),表示敌人有N个工兵营地 ,接下来有N个正整数,第i个正整 ...
- POJ 2777 线段树基础题
题意: 给你一个长度为N的线段数,一开始每个树的颜色都是1,然后有2个操作. 第一个操作,将区间[a , b ]的颜色换成c. 第二个操作,输出区间[a , b ]不同颜色的总数. 直接线段树搞之.不 ...
- HDU 1754 I Hate It(线段树基础应用)
基础线段树 #include<iostream> #include<cstdio> #include<cstring> using namespace std; # ...
- HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)
题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...
- hdu 1754 I Hate It 线段树基础题
Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求, ...
- hdu 1698 Just a Hook(线段树基础)
成段更新的线段树,加入了延时标记............ 线段树这种东西细节上的理解因人而异,还是要自己深入理解......慢慢来 #include <iostream> #include ...
随机推荐
- JZOJ 5328. 【NOIP2017提高A组模拟8.22】世界线
5328. [NOIP2017提高A组模拟8.22]世界线 (File IO): input:worldline.in output:worldline.out Time Limits: 1500 m ...
- JZOJ 3927. 【NOIP2014模拟11.6】可见点数
3927. [NOIP2014模拟11.6]可见点数 (Standard IO) Time Limits: 1000 ms Memory Limits: 65536 KB Description ZP ...
- 【译文连载】 理解Istio服务网格(第七章 安全)
全书目录 第一章 概述 第二章 安装 第三章 流控 第四章 服务弹性 第五章 混沌测试 第六章 可观测性 本文目录 第7章 安全 7.1 身份认证 7.1.1 Kubernetes上的Istio的身份 ...
- 论nw.js的坑~~~感觉我所有的前端能遇到的坑都踩了一遍
先总结:nw.js 真特么的...难用...文档,我得先百度才能看的稍微明白点文档......!!!!!!我感觉我所有的前端能遇到的坑都踩了一遍,此文针对前后端分离项目,别的先不说 一.不需要在项目里 ...
- Python学习笔记.基础一
Python 语言:解释型.交互式.面向对象. Python源代码遵循GPL协议 Python标识符 在python里,标识符有字母.数字.下划线组成. 在python中,所有标识符可以包括英 ...
- Java集合04——fail-fast&fail-safe 详解
在前几个回合中,我们已经详细了解过了 Java 集合中的List.Set 和 Map,对这部分内容感兴趣的朋友可以关注我的公众号「Java面典」了解.今天我们将为各位介绍集合的失败机制--fail-f ...
- c++第二周阶段小测2
函数参数已完成(全部是正确答案) 1 [单选题] 以下关于函数参数的说法,不正确的是 A. 函数调用时,先将实参的值按照位置传递给对应的形参. B. 实参与形参的个数及顺序不必一一对应. ...
- python基础学习day6
代码块.缓存机制.深浅拷贝.集合 id.is.== id: 可类比为身份号,具有唯一性,若id 相同则为同一个数据. #获取数据的内存地址(随机的地址:内存临时加载,存储数据,当程序运行结束后,内存地 ...
- ASP.net MVC 构建layui管理后台(构造基础仓储)<1>
本文章为ASP.net MVC 构建layui管理后台,第一篇. 使用EF+ado.net 实体数据模型模式进行底层的数据库连接. 在项目添加一个类库Model 在类库Model上添加一个ado.ne ...
- Spyder——科学的Python开发环境
刚开始接触Python的时候,网上找到的资料基本上上来就是介绍Python语言,很少有对开发环境进行讲解的,但如果在学习的过程中不断练习,这样效率会更高,所以特意将一个Python的开发环境Spyde ...