给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。

数据保证不存在负权回路。

输入格式

第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式

输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出”impossible”。

数据范围

1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过10000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2

对bellman_ford优化
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue> using namespace std; typedef pair<int, int> PII; const int N = 1e5 + 10; int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N]; void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
} int spfa()
{
memset(dist,0x3f,sizeof dist);
dist[1] = 0; //定义队列存储所有待更新的点
queue<int> q;
q.push(1);//1号点放入队列
st[1] = true;//表示当前这个点是不是在队列当中,防止队列当中存储重复的点 while(q.size()){//队列不空
int t = q.front();
q.pop(); st[t] = false; //更新t的所有的邻边
for(int i = h[t];i != -1;i = ne[i]){
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if(!st[t])
{
q.push(j);
st[j] = true;
}
}
} } if(dist[n] == 0x3f3f3f3f) return -1;
else return dist[n]; } int main()
{
scanf("%d%d", &n, &m); memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
} int t = spfa();
if(t == -1) cout << "impossible";
else
cout << spfa() << endl; return 0;
}

  

851. spfa求最短路的更多相关文章

  1. ACM - 最短路 - AcWing 851 spfa求最短路

    AcWing 851 spfa求最短路 题解 以此题为例介绍一下图论中的最短路算法 \(Bellman\)-\(Ford\) 算法.算法的步骤和正确性证明参考文章最短路径(Bellman-Ford算法 ...

  2. acwing 851. spfa求最短路 模板

    地址 https://www.acwing.com/problem/content/description/853/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...

  3. 851. spfa求最短路(spfa算法模板)

    给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...

  4. AcWing 851. spfa求最短路 边权可能为负数。 链表 队列

    #include <cstring> #include <iostream> #include <algorithm> #include <queue> ...

  5. 基于bellman-ford算法使用队列优化的spfa求最短路O(m),最坏O(n*m)

    acwing851-spfa求最短路 #include<iostream> #include<cstring> #include<algorithm> #inclu ...

  6. spfa求次短路

    思路:先算出每个点到1的最短路d1[i],记录下路径,然后枚举最短路上的边 删掉之后再求一遍最短路,那么这时的最短路就可能是答案. 但是这个做法是错误的,可以被卡掉. 比如根据下面的例题生成的一个数据 ...

  7. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  8. Holy Grail【spfa求最短路】

    题目链接:https://www.jisuanke.com/contest/3004?view=challenges 题目大意: 1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的.每次添边的 ...

  9. poj2387 spfa求最短路

    //Accepted 4688 KB 63 ms #include <cstdio> #include <cstring> #include <iostream> ...

随机推荐

  1. ZJNU 2136 - 会长的正方形

    对于n*m网格 取min(n,m)作为最大的正方形边长 则答案可以表示成 s=1~min(n,m) 对于一个s*s的正方形 用oblq数组储存有多少四个角都在这个正方形边上的正方形 以4*4为例 除了 ...

  2. ZJNU 2135 - 小智的宝可梦

    因为成环 所以可以枚举第1只与第n只喂的次数 然后第1只和第2只的次数就固定了,以此类推,则所有宝可梦喂的次数都固定了 最后处理完检查是否全为0,不是则进行下一次枚举,是则直接输出Yes 如果所有枚举 ...

  3. 关于luoguU67856 数列一题

    本题采用累加法 首先这个式子\[a_n = ka_{n-1}+b\]的通项不用我说了吧 然后就是累加法 \[S_n = \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} ka_{ ...

  4. BBS项目架构实现

    一.注册功能 注册页面搭建 auto_id 数据校验 使用forms组件实现(forms) 创建一个文件夹随意,创建一个.py中 在.py文件中创建类继承form.Form 创建字段实现,实现对字段的 ...

  5. 简单的tab栏切换

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. Web前端学习方向

    第一部分 HTML 第一章 职业规划和前景 职业方向规划定位: web前端开发工程师 web网站架构师 自己创业 转岗管理或其他 web前端开发的前景展望: 未来IT行业企业需求最多的人才 结合最新的 ...

  7. 把cifar数据转换为图片

    参考 https://gist.github.com/fzliu/64821d31816bce595a4bbd98588b37f5 """ make_cifar10.py ...

  8. python学习笔记(29)-操作excel

    操作excel #存到excel里面,python去操作excel文件 #只支持这种后缀,xlsx ,openpyxl只支持这种格式 # from openpyxl import load_workb ...

  9. P4327 彼得潘框架

    题意翻译 “彼得·潘框架”是一种装饰文字,每一个字母都是由一个菱形框架.一个彼得·潘框架看起来像这样 (x是字母,#是框架): ..#.. .#.#. #.X.# .#.#. ..#.. 然而,只是一 ...

  10. 华为鸿蒙系统pk安卓系统

    Harmony OS Vs Android Comparison It isn’t based on Linux kernel The key difference between HarmonyOS ...