NOIP200304麦森数
试题描述
|
形如2P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。 任务:从文件中输入P(1000<P<3100000),计算2P-1的位数和最后500位数字(用十进制高精度数表示) |
输入
|
文件中只包含一个整数P(1000<P<3100000)
|
输出
|
第一行:十进制高精度数2P-1的位数。
第2-11行:十进制高精度数2P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0) 不必验证2P-1与P是否为素数。 |
输入示例
|
1279
|
输出示例
|
386
00000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000 00000000000000104079321946643990819252403273640855 38615262247266704805319112350403608059673360298012 23944173232418484242161395428100779138356624832346 49081399066056773207629241295093892203457731833496 61583550472959420547689811211693677147548478866962 50138443826029173234888531116082853841658502825560 46662248318909188018470682222031405210266984354887 32958028878050869736186900714720710555703168729087 |
我竟然还会写高精度!?!?!?
第一问用数学解法,第二问写个乘法,套个快速幂就行了。
妈妈我忘删调试了,竟然又T了一发,这是打铁的节奏么?!?!?!
#include<cstdio>
#include<cctype>
#include<cmath>
#include<cstring>
#include<algorithm>
#define lc ch[x][0]
#define rc ch[x][1]
#define rep(s,t) for(int i=s;i<=t;i++)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
struct bign {
int len,s[maxn];
bign() {len=;fill(s,s+maxn,);}
bign operator = (int a) {
len=;while(a) s[len++]=a%,a/=;
}
void clean() {while(len>&&!s[len-]) len--;}
void print() {
int cnt=;
rep(len,) s[i]=;
for(int i=;i>=;i--) {
putchar(s[i]+'');
if(++cnt==) cnt=,putchar('\n');
}
}
bign operator * (bign &b) {
bign ans;
rep(,len-)
for(int j=;j<b.len;j++)
if(i+j<) ans.s[i+j]+=s[i]*b.s[j];
ans.len=min(len+b.len+,);
rep(,ans.len-) ans.s[i+]+=ans.s[i]/,ans.s[i]%=;
ans.clean();
return ans;
}
};
void pow(bign& ans,int n) {
bign tmp;tmp=ans;n--;
while(n) {
if(n&) ans=ans*tmp;
tmp=tmp*tmp;n>>=;
}
}
int main() {
int n=read();
bign ans;ans=;pow(ans,n);
ans.s[]--;printf("%d\n",int(log10()*n)+);
ans.print();
return ;
}
NOIP200304麦森数的更多相关文章
- 【转】[NOIP2003普及组]麦森数
来源:http://vivid.name/tech/mason.html 不得不纪念一下这道题,因为我今天一整天的时间都花到这道题上了.因为这道题,我学会了快速幂,学会了高精度乘高精度,学会了静态查错 ...
- vijosP1223麦森数
vijosP1223麦森数 链接:https://vijos.org/p/1223 [思路] 快速幂+高精乘. 计算2^p-1可以快速幂的方法在O(logn)的时间内出解,限于数据范围我们需要用到高精 ...
- 【高精度乘法】NOIP2003麦森数
题目描述 形如2^{P}-12P−1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12P−1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的 ...
- 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂
洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...
- TZOJ 4839 麦森数(模拟快速幂)
描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有9 ...
- 洛谷 P1045 麦森数
题目描述 形如2^{P}-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^{P}-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...
- [NOIP2003普及组]麦森数(快速幂+高精度)
[NOIP2003普及组]麦森数(快速幂+高精度) Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998 ...
- 洛谷P1045 麦森数
题目描述 形如2^{P}-12 P −1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12 P −1不一定也是素数.到1998年底,人们已找 ...
- 麦森数--NOIP2003
题目描述 形如2P−12^{P}-12P−1 的素数称为麦森数,这时PPP 一定也是个素数.但反过来不一定,即如果PPP 是个素数,2P−12^{P}-12P−1 不一定也是素数.到1998年底,人们 ...
随机推荐
- php远程抓取网站图片并保存
以前看到网上别人说写程序抓取网页图片的,感觉挺神奇,心想什么时候我自己也写一个抓取图片的方法! 刚好这两天没什么事,就参考了网上一个php抓取图片代码,重点借鉴了 匹配img标签和其src属性正则的写 ...
- 如何在Linux上实现文件系统的自动检查和修复?
Linux文件系统有可能在各种各样的情况下受到损坏,比如系统崩溃.突然断电.磁盘断开,或者文件节点 (i-node)不小心被覆盖等等,因此需要定期检查文件系统,而说到检查和修复Linux文件系统,fs ...
- Django中如何查找模板
参考:http://my.oschina.net/zuoan001/blog/188782 Django的setting中有关找模板的配置有如下两个: TEMPLATE_LOADERS TEMPLAT ...
- Android ViewPager轮播图
Android客户端开发中很多时候需要用到轮播图的方式进行重点新闻的推送或者欢迎页面的制作,下面这个轮播图效果的Deamo来自互联网再经过修改而成. 1.布局文件activity_main.xml中添 ...
- codeforces 468A. 24 Game 解题报告
题目链接:http://codeforces.com/problemset/problem/468/A 题目意思:给出一个数n,利用 1 - n 这 n 个数,每个数只能用一次,能否通过3种运算: + ...
- 有时间测试dism
dism /capture-image /imagefile:d\win.win /capturedir:c:\ /name:win81 dism /export-image /winboot /so ...
- android中src和background区别
background会根据ImageView组件给定的长宽进行拉伸,而src就存放的是原图的大小,不会进行拉伸.src是图片内容(前景),bg是背景,可以同时使用. 此外:scaleType只对src ...
- WebService之CXF框架
本文主要包括以下内容 ant工具的使用 利用cxf实现webservice cxf与spring整合 ajax访问webservice ant 工具 1.为什么要用到ant这个工具呢? Ant做为一种 ...
- 菜鸟学Linux命令:bg fg jobs命令 任务管理
jobs命令 jobs命令用于查看当前终端后台运行的任务 注意和ps的区别: ps命令用于查看瞬间进程的动态 通过一个实例可以理解它们之间的区别,依次执行如下命令:vim & //后台执行vi ...
- 设计模式学习之单例模式(Singleton,创建型模式)(4)
假如程序中有一个Person类,我的需求就是需要在整个应用程序中只能new一个Person,而且这个Person实例在应用程序中进行共享,那么我们该如何实现呢? 第一步: 新建一个Person类,类中 ...