Time Limit: 10000MS   Memory Limit: 131072KB   64bit IO Format: %lld & %llu

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4 
1
13
100
1234567

Sample Output

1 
19
163
2030745

Hint

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

Source

中山市选2011

用莫比乌斯反演搞一搞。

详细题解之后补

————————updated 2017.3

震惊!一句详细题解之后补,竟然就拖了一年!

根据莫比乌斯函数的定义,同一质因子出现多次的数,对应的mu值都是0

要求1~n范围内有多少满足题意的数

$ans=\sum_{i=1}^{\sqrt n} \mu(i)*(n/(i*i))$

二分答案即可

————————

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int mxn=;
int pri[];
int mu[];
bool mark[];
int cnt;
long long n;
long long ans;
void getmu(){
int i,j;
mu[]=;
for(i=;i<=mxn;i++){
if(!mark[i]) pri[++cnt]=i,mu[i]=-;
for(j=;j<=cnt && pri[j]*i<=mxn;j++){
mark[pri[j]*i]=;
if(i%pri[j]==){
mu[i*pri[j]]=;
break;
}
else mu[i*pri[j]]=-mu[i];
}
}
return;
}
long long calc(int x){
long long ans=;
int t=sqrt(x);
for(int i=;i<=t;i++)
ans+=x/(i*i)*mu[i];
return ans;
}
int main(){
getmu();
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
long long l=n,r=;
while(l<=r){
long long mid=(l+r)>>;
if(calc(mid)>=n)ans=mid,r=mid-;
else l=mid+;
}
printf("%lld\n",ans);
}
return ;
}

Bzoj2440 完全平方数的更多相关文章

  1. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  2. [BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用

    完全平方数 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱.  这天是小X的生日 ...

  3. bzoj2440完全平方数

    题目链接 上来先吐槽题面!!!!!! 你跟我说$1$不是完全平方数昂? 看了半天样例啊. 活生生的半天$……$ 莫比乌斯 反演    函数容斥一下,每次二分就好 反正本宝宝不知道反演是啥. 每次判断应 ...

  4. BZOJ2440完全平方数(莫比乌斯反演)

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  5. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

  6. [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]

    题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...

  7. [bzoj2440]完全平方数(二分+mobius反演)

    解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数...... 这道题用莫比乌斯的正向 ...

  8. [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]

    题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...

  9. SIEVE 线性筛

    今天来玩玩筛 英文:Sieve 有什么筛? 这里介绍:素数筛,欧拉筛,约数个数筛,约数和筛 为什么要用筛? 顾名思义,筛就是要漏掉没用的,留下有用的.最终筛出来1~n的数的一些信息. 为什么要用线性筛 ...

随机推荐

  1. ubuntu 命令收集

    1. ctrl + Alt + F1:   进入纯粹的命令行. 2. ctr + Alt + T :    从图形界面打开终端.

  2. 程序清单8-3 8-4 演示不同的exit值

    //http://blog.chinaunix.net/uid-24549279-id-71355.html /* ========================================== ...

  3. 八、Foundation -常用结构体

    一.NSRange 在foundation/NSRange.h中对NSRange的定义 typedef struct _NSRange{ NSUInteger location; NSUInteger ...

  4. Myeclipse+maven时Tomcat部署时maven的依赖文件不能部署到Tomcat上

    解决办法:

  5. Silverlight中使用MVVM:DataGrid中触发Button的Click事件

    方法1.使用RelativeSource向上查找DataContext中的命令,但是需要注意的是命令绑定需要写全 类似: DataContext.ReLoadCommand<Button Gri ...

  6. 检测到 LoaderLock:DLL"XXXX"正试图在OS加载程序锁内执行

    解决方法: ctrl+D+E或alt+ctl+e或使用菜单调试——>异常——>异常窗口——>Managed Debugging Assistants——>去掉LoaderLoc ...

  7. SQL Server优化50法

    查询速度慢的原因很多,常见如下几种:    1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)    2.I/O吞吐量小,形成了瓶颈效应.    3.没有创建计算列导致查询不优化 ...

  8. CSS 动画之十-图片+图片信息展示

    这个动画主要是运用了一些css3的特性,效果是展示一张商品图片,然后在商品图片的制定位置显示该商品的详细信息.效果在chrome浏览器中预览. <!DOCTYPE html> <ht ...

  9. JS案例之6——瀑布流布局(1)

    在实际的项目中,偶尔会用到一种布局——瀑布流布局.瀑布流布局的特点是,在多列布局时,可以保证内容区块在水平方向上不产生大的空隙,类似瀑布的效果.简单的说,在垂直列表里,内容区块是一个挨着一个的.当内容 ...

  10. ultraEdit32 /uedit32 自定义快捷键/自定义注释快捷键

    编辑器一直用vim,但同事写VHDL 用的是utraledit32 ,为了更好的沟通,我也下载了最新破解版本:http://pan.baidu.com/s/1qWCYP2W 刚开始用找不到注释的快捷键 ...