Bzoj2440 完全平方数
Time Limit: 10000MS | Memory Limit: 131072KB | 64bit IO Format: %lld & %llu |
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
4
1
13
100
1234567
Sample Output
1
19
163
2030745
Hint
对于 100%的数据有 1 ≤ Ki ≤ 10^9
, T ≤ 50
Source
用莫比乌斯反演搞一搞。
详细题解之后补
————————updated 2017.3
震惊!一句详细题解之后补,竟然就拖了一年!
根据莫比乌斯函数的定义,同一质因子出现多次的数,对应的mu值都是0
要求1~n范围内有多少满足题意的数
$ans=\sum_{i=1}^{\sqrt n} \mu(i)*(n/(i*i))$
二分答案即可
————————
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int mxn=;
int pri[];
int mu[];
bool mark[];
int cnt;
long long n;
long long ans;
void getmu(){
int i,j;
mu[]=;
for(i=;i<=mxn;i++){
if(!mark[i]) pri[++cnt]=i,mu[i]=-;
for(j=;j<=cnt && pri[j]*i<=mxn;j++){
mark[pri[j]*i]=;
if(i%pri[j]==){
mu[i*pri[j]]=;
break;
}
else mu[i*pri[j]]=-mu[i];
}
}
return;
}
long long calc(int x){
long long ans=;
int t=sqrt(x);
for(int i=;i<=t;i++)
ans+=x/(i*i)*mu[i];
return ans;
}
int main(){
getmu();
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
long long l=n,r=;
while(l<=r){
long long mid=(l+r)>>;
if(calc(mid)>=n)ans=mid,r=mid-;
else l=mid+;
}
printf("%lld\n",ans);
}
return ;
}
Bzoj2440 完全平方数的更多相关文章
- bzoj2440 完全平方数 莫比乌斯值+容斥+二分
莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...
- [BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用
完全平方数 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日 ...
- bzoj2440完全平方数
题目链接 上来先吐槽题面!!!!!! 你跟我说$1$不是完全平方数昂? 看了半天样例啊. 活生生的半天$……$ 莫比乌斯 反演 函数容斥一下,每次二分就好 反正本宝宝不知道反演是啥. 每次判断应 ...
- BZOJ2440完全平方数(莫比乌斯反演)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...
- [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]
题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...
- [bzoj2440]完全平方数(二分+mobius反演)
解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数...... 这道题用莫比乌斯的正向 ...
- [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]
题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...
- SIEVE 线性筛
今天来玩玩筛 英文:Sieve 有什么筛? 这里介绍:素数筛,欧拉筛,约数个数筛,约数和筛 为什么要用筛? 顾名思义,筛就是要漏掉没用的,留下有用的.最终筛出来1~n的数的一些信息. 为什么要用线性筛 ...
随机推荐
- 转: 在创业公司使用C++
from: http://oicwx.com/detail/827436 在创业公司使用C++ 2016-01-04开发资讯 James Perry和朋友创办了一家公司,主要是做基于云的OLAP多维数 ...
- mysql乱码的好文
1. http://www.blogjava.net/wldandan/archive/2007/09/04/142669.html 2. http://www.111cn.net/database/ ...
- Android优化——UI优化(一)优化布局层次
优化布局层次 1.避免布局镶嵌过深(如下) <LinearLayout xmlns:android="http://schemas.android.com/apk/res/androi ...
- mysqli_stmt预处理类的使用
- 09SpringMvc_再次讲一下SpringMvc的工作流:
整个SpringMvc的流程图:
- 17Spring_AOP编程(AspectJ)_AspectJ的注解编程
前面的各种Aop编程,都是基于XML的,这篇文章讲的是把XML方式改为注解方式来做. Spring注解开发和xml开发所需要的包是一样的,所以只要把xml开发方式的包复制到以注解为开发方式的包的项目下 ...
- Css 常用属性
1. overflow:hidden和zoom:1 verflow:hidden;的作用 1. 隐藏溢出 :2.消除浮动 <style type="text/css"> ...
- Managing the Lifecycle of a Service
service的生命周期,从它被创建开始,到它被销毁为止,可以有两条不同的路径: A started service 被开启的service通过其他组件调用 startService()被创建. 这种 ...
- Camera中对焦模式总结
1,相机对焦模式有以下几种: auto //自动 infinity //无穷远 macro //微距 continuous-picture //持续对焦 fixed //固定焦距 2,常见对焦模 ...
- navigator.sendBeancon方法简介
之所以介绍这个还在草案中的方法,是源于最近新做的一个活动.该活动有个需求,就是用户离开该页面的某个时间段之后,发个请求给该用户送券.后来是通过setTimeout来做的,用户离开该页面,该页面进入后台 ...