快速select算法的实现
代码来自:
算法思想:
// Quick_select.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include <time.h> using namespace std; const int num_array = 13;
const int num_med_array = num_array/5 + 1; int array[num_array];
int midian_array[num_med_array]; /*
//插入排序算法伪代码
INSERTION-SORT(A) cost times
1 for j ← 2 to length[A] c1 n
2 do key ← A[j] c2 n - 1
3 Insert A[j] into the sorted sequence A[1 ‥ j - 1]. 0...n - 1
4 i ← j - 1 c4 n - 1
5 while i > 0 and A[i] > key c5
6 do A[i + 1] ← A[i] c6
7 i ← i - 1 c7
8 A[i + 1] ← key c8 n - 1
*/ void insert_sort(int array[], int left, int loop_times)
{//这块的插入排序感觉有点问题,第一个数字没有排啊
for (int j = left; j < left+loop_times; j++)
{
int key = array[j];
int i = j - 1; while (i > left && array[i] > key)
{
array[i+1] = array[i];
i--;
} array[i+1] = key;
}
} void insertion_sort(int array[],int first,int last)
{
int i,j;
int temp;
for(i = first + 1 ;i<=last;i++)
{
temp = array[i];
j=i-1;
//与已排序的数逐一比较,大于temp时,该数移后
while((j>=0)&&(array[j]>temp))
{
array[j+1]=array[j];
j--;
}
//存在大于temp的数
if(j!=i-1)
{array[j+1]=temp;}
} } int find_median(int array[], int left, int right)
{
if (left == right)
return array[left];int index;
for (index = left; index < right - 5; index += 5)
{
//insert_sort(array, index, 4);
insertion_sort(array,index,4);
int num = index - left;
midian_array[num / 5] = array[index + 2];
}
// 处理剩余元素
int remain_num = right - index + 1;
if (remain_num > 0)
{
//insert_sort(array, index, remain_num - 1);
insertion_sort(array,index,remain_num - 1);
int num = index - left;
midian_array[num / 5] = array[index + remain_num / 2];
}
int elem_aux_array = (right - left) / 5 - 1;
if ((right - left) % 5 != 0)
elem_aux_array++;
// 如果剩余一个元素返回,否则继续递归
if (elem_aux_array == 0)
return midian_array[0];
else
return find_median(midian_array, 0, elem_aux_array);
} // 寻找中位数的所在位置
int find_index(int array[], int left, int right, int median)
{
for (int i = left; i <= right; i++)
{
if (array[i] == median)
return i;
}
return -1;
} int q_select(int array[], int left, int right, int k)
{
// 寻找中位数的中位数
int median = find_median(array, left, right);
// 将中位数的中位数与最右元素交换
int index = find_index(array, left, right, median);
swap(array[index], array[right]);
int pivot = array[right];
// 申请两个移动指针并初始化
int i = left;
int j = right - 1;
// 根据枢纽元素的值对数组进行一次划分
while (true)
{
while(array[i] < pivot)
i++;
while(array[j] > pivot)
j--;
if (i < j)
swap(array[i], array[j]);
else
break;
}
swap(array[i], array[right]);
/* 对三种情况进行处理:(m = i - left + 1)
1、如果m=k,即返回的主元即为我们要找的第k 小的元素,那么直接返回主元a[i]即可;
2、如果m>k,那么接下来要到低区间A[0....m-1]中寻找,丢掉高区间;
3、如果m<k,那么接下来要到高区间A[m+1...n-1]中寻找,丢掉低区间。
*/
int m = i - left + 1;
if (m == k)
return array[i];
else if(m > k)
//上条语句相当于if( (i-left+1) >k),即if( (i-left) > k-1 ),于此就与2.2 节里的
//代码实现一、二相对应起来了。
return q_select(array, left, i - 1, k);
else
return q_select(array, i + 1, right, k - m);
} int _tmain(int argc, _TCHAR* argv[])
{
//srand(unsigned(time(NULL)));
//for (int j = 0; j < num_array; j++)
int a[4] = {13,26,9,100};
insert_sort(a,0,3); //insertion_sort(a,0,3); cout<<a[0]<<a[1]<<a[2]<<a[3]<<endl; //array[j] = rand();
int array[num_array]={0,45,78,55,47,4,1,2,7,8,96,36,45};
// 寻找第k 最小数
int k = 13;
int i = q_select(array, 0, num_array - 1, k);
cout << i << endl; getchar();
return 0;
}
快速select算法的实现的更多相关文章
- 【编程练习】快速select算法的实现
代码来自: http://blog.csdn.net/v_JULY_v 算法思想: // Quick_select.cpp : 定义控制台应用程序的入口点. // #include "std ...
- SSE图像算法优化系列十三:超高速BoxBlur算法的实现和优化(Opencv的速度的五倍)
在SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现) 一文中,我曾经说过优化后的ExpBlur比BoxBlur还要快,那个时候我比较的BoxBlur ...
- Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。
Python八大算法的实现,插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得 ...
- 排序算法的实现之Javascript(常用)
排序算法的实现之Javascript 话不多说,直接代码. 1.冒泡排序 1.依次比较相邻的两个数,如果前一个比后一个大,则交换两者的位置,否则位置不变 2.按照第一步的方法重复操作前length-1 ...
- Alink漫谈(六) : TF-IDF算法的实现
Alink漫谈(六) : TF-IDF算法的实现 目录 Alink漫谈(六) : TF-IDF算法的实现 0x00 摘要 0x01 TF-IDF 1.1 原理 1.2 计算方法 0x02 Alink示 ...
- Bug2算法的实现(RobotBASIC环境中仿真)
移动机器人智能的一个重要标志就是自主导航,而实现机器人自主导航有个基本要求--避障.之前简单介绍过Bug避障算法,但仅仅了解大致理论而不亲自动手实现一遍很难有深刻的印象,只能说似懂非懂.我不是天才,不 ...
- Canny边缘检测算法的实现
图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波.我们知道微分运算是求信号的变化率,具有加强高频分量的作用.在空域运算中来说,对图像的锐化就是计算微分.由于数字图像的离散信号, ...
- java基础解析系列(四)---LinkedHashMap的原理及LRU算法的实现
java基础解析系列(四)---LinkedHashMap的原理及LRU算法的实现 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析 ...
- 详解Linux内核红黑树算法的实现
转自:https://blog.csdn.net/npy_lp/article/details/7420689 内核源码:linux-2.6.38.8.tar.bz2 关于二叉查找树的概念请参考博文& ...
随机推荐
- pandas学习笔记 - 文件的写入和输出
# -*- coding: utf-8 -*- """ Created on Tue Aug 28 22:19:26 2018 @author: Dev " ...
- Java基础学习总结(46)——JAVA注解快速入门
各位开发童鞋,注解这个东西我们肯定每天都能看见,也许有时候看的太多了到是会忽略注解这东西具体是如何工作的.今天在这里用最短的篇幅快速讲解下注解的原理,对这块记的不太清楚的同学也可以再次看看,下次有人详 ...
- vs解决方案里复制一个项目
首先,保证要复制的项目的整洁无垃圾文件: 然后,选“文件”/“导出模板”,起个名字: 再者,创建一个同类型的项目,这时项目模板里就会出现你刚才导出的项目了.
- 软件project之软件设计
英雄是随着历史的时代产生的.软工也不例外.软件project这一门学科主要是为了解决当代软件危机而诞生的, 学习软件project的视频过后,最终让我揭开了它的神奇面纱,让我对软工设计有了一个初步的认 ...
- Datazen图表创建和公布
Datazen是被微软收购的移动端全平台的数据展现解决方式.此篇主要介绍怎样创建和公布图表. 如前面介绍,Datazen图表的创建和公布是通过Publisher的应用,它是Windows 8应用 ...
- nj04---事件回调函数
一.回调函数 1.异步式读取文件 var fs=require('fs'); fs.readFile('file.txt','utf-8',function(err,data){ if(err){ c ...
- angularjs 表单校验
<!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...
- Hadoop的目录结构
- LOJ #109. 并查集
内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论 1 测试数据 题目描述 这是一道模板题. 维护一个 nnn 点 ...
- 滑动切换Activity代码
最近需要对练习项目中的代码进行优化,发现很多代码写起来远比想象的困难很多.刚接触Android时间不长,很多东西都不能融会贯通,所以才会有这样的问题存在,当然学习中遇到的问题很有必要做个总结.想想这个 ...