BZOJ3158: 千钧一发
【传送门:BZOJ3158】
简要题意:
给出n个机器,每个机器有a[i]基础值和b[i]价值
选出一部分机器使得这些机器里面两两至少满足以下两种条件之一:
1.a[i]2+a[j]2!=T2(T为正整数)
2.gcd(a[i],a[j])>1
求出能达到要求的最大价值
题解:
神最小割
要求一个最大价值,那么我们可以转换成求损失的价值最小
但是这里两个子集的分化并不明显
对于第二个要求,如果两点的a值都为偶数,那么肯定满足
那如果两个数都为奇数的话,也必定满足要求一,证明如下:
1、一个奇数的平方%4为1,一个偶数的平方%4为0
2、两个奇数的平方和%4为2
3、如果两个奇数的平方和是一个奇数的平方,那么%4应该为1,不符合
4、如果两个奇数的平方和是一个偶数的平方,那么%4应该为0,不符合
这样子思考的话,两个子集的分化就较为明显了:
st向a值为奇数的相连,a值为偶数的向ed相连,容量都为b值;
这样子所形成的两个子集里面的点一定都是符合要求的。
最后一步,也是最关键的一步:
两个子集之间两两匹配,如果当前匹配的两个点是不符合要求的,就将这两个点相连,容量为无限大。
跑最小割,割出来的边就是损失价值的最小值 用sum-最小割就是答案
by Cherish_OI
注意要加long long
参考代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long LL;
struct node
{
int x,y,next,other;LL c;
}a[];int len,last[];
void ins(int x,int y,LL c)
{
int k1=++len,k2=++len;
a[k1].x=x;a[k1].y=y;a[k1].c=c;
a[k1].next=last[x];last[x]=k1;
a[k2].x=y;a[k2].y=x;a[k2].c=;
a[k2].next=last[y];last[y]=k2;
a[k1].other=k2;
a[k2].other=k1;
}
int h[],list[],st,ed;
bool bt_h()
{
memset(h,,sizeof(h));h[st]=;
list[]=st;
int head=,tail=;
while(head!=tail)
{
int x=list[head];
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(a[k].c>&&h[y]==)
{
h[y]=h[x]+;
list[tail++]=y;
}
}
head++;
}
if(h[ed]==) return false;
else return true;
}
LL findflow(int x,LL f)
{
if(x==ed) return f;
int s=,t;
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(a[k].c>&&h[y]==(h[x]+)&&f>s)
{
t=findflow(y,min(a[k].c,f-s));
s+=t;
a[k].c-=t;a[a[k].other].c+=t;
}
}
if(s==) h[x]=;
return s;
}
LL gcd(LL a,LL b)
{
if(a==) return b;
else return gcd(b%a,a);
}
LL A[],B[];
bool check(LL x,LL y)
{
LL c=sqrt(x*x+y*y);
if(c*c!=x*x+y*y) return false;
if(gcd(x,y)>) return false;
return true;
}
int main()
{
int n;
scanf("%d",&n);
st=;ed=n+;
len=;memset(last,,sizeof(last));
LL sum=;
for(int i=;i<=n;i++)
{
scanf("%lld",&A[i]);
sum+=A[i];
if(A[i]%==) ins(st,i,A[i]);
else ins(i,ed,A[i]);
}
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(check(A[i],A[j])==true&&(A[i]%==)&&(A[j]%==))
{
ins(i,j,);
}
}
}
while(bt_h()==true) sum-=findflow(st,);
printf("%lld\n",sum);
return ;
}
BZOJ3158: 千钧一发的更多相关文章
- BZOJ3158 千钧一发(最小割)
可以看做一些物品中某些互相排斥求最大价值.如果这是个二分图的话,就很容易用最小割了. 观察其给出的条件间是否有什么联系.如果两个数都是偶数,显然满足条件二:而若都是奇数,则满足条件一,因为式子列出来发 ...
- [bzoj3158]千钧一发——二分图+网络流
题目 传送门 题解 很容易建立模型,如果两个点不能匹配,那么连一条边,那么问题就转化为了求一个图上的最大点权独立集. 而我们可以知道: 最大点权独立集+最小点权覆盖集=总权值. 同时最小点权覆盖在一般 ...
- 【BZOJ3158】千钧一发 最小割
[BZOJ3158]千钧一发 Description Input 第一行一个正整数N. 第二行共包括N个正整数,第 个正整数表示Ai. 第三行共包括N个正整数,第 个正整数表示Bi. Output 共 ...
- 【bzoj3158】 千钧一发
http://www.lydsy.com/JudgeOnline/problem.php?id=3158 (题目链接) 题意 给出n个装置,每个装置i有一个特征值a[i]和一个能量值b[i],要求选出 ...
- bzoj3158&3275: 千钧一发(最小割)
3158: 千钧一发 题目:传送门 题解: 这是一道很好的题啊...极力推荐 细看题目:要求一个最大价值,那么我们可以转换成求损失的价值最小 那很明显就是最小割的经典题目啊?! 但是这里两个子集的分化 ...
- 【BZOJ-3275&3158】Number&千钧一发 最小割
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 748 Solved: 316[Submit][Status][Discus ...
- BZOJ 3158: 千钧一发
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1201 Solved: 446[Submit][Status][Discuss ...
- 【BZOJ】【3158】千钧一发
网络流/最小割 这题跟BZOJ 3275限制条件是一样的= =所以可以用相同的方法去做……只要把边的容量从a[i]改成b[i]就行了- (果然不加当前弧优化要略快一点) /************** ...
- bzoj 3158 千钧一发(最小割)
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 767 Solved: 290[Submit][Status][Discuss] ...
随机推荐
- How Javascript works (Javascript工作原理) (八) WebAssembly 对比 JavaScript 及其使用场景
个人总结: webworker有以下三种: Dedicated Workers 由主进程实例化并且只能与之进行通信 Shared Workers 可以被运行在同源的所有进程访问(不同的浏览的选项卡,内 ...
- HDU-1043 Eight八数码 搜索问题(bfs+hash 打表 IDA* 等)
题目链接 https://vjudge.net/problem/HDU-1043 经典的八数码问题,学过算法的老哥都会拿它练搜索 题意: 给出每行一组的数据,每组数据代表3*3的八数码表,要求程序复原 ...
- thinkphp5 编辑时 唯一验证 解决办法
若定义了相关的验证规则,如: namespace app\seller\validate; use think\Validate; class Goodsmtag extends Validate { ...
- readb(), readw(), readl(),writeb(), writew(), writel() 宏函数
参见: http://blog.csdn.net/hustyangju/article/details/20448339
- ajax前台传到后台乱码,显示问号的问题
response.setContentType("text/html;charset=gbk"); response.setHeader("Cache-Control&q ...
- 很好的DP思路,字符串比较次数
题目: https://leetcode.com/problems/distinct-subsequences/?tab=Description 一般没有明显思路的情况下,都要想想DP,用下Divid ...
- 小于等于N的全部整数与N关于gcd(i,N)的那些事
相关问题1: 求小于等于N的与N互质的数的和.即∑ i (gcd(i,N)=1, N>=i>0) 依据N的规模能够有非常多种方法.这里我介绍一个比較经典的方法 先说下这个结论:假设 gcd ...
- WET Dilutes Performance Bottlenecks
WET Dilutes Performance Bottlenecks Kirk Pepperdine THE IMPORTANCE OF THE DRY PRINCIPLE (Don't Repea ...
- jsp布局中关于<iframe>标签的使用
iframe 元素会创建包括另外一个文档的内联框架(即行内框架). 注意:在 HTML 4.1 Strict DTD 和 XHTML 1.0 Strict DTD 中,不支持 iframe 元素. & ...
- Logical Operators (Transact-SQL)
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/logical-operators-transact-sql Logical ...