2229: [Zjoi2011]最小割(最小割树)
Description
小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。
Input
输入文件第一行有且只有一个正整数T,表示测试数据的组数。 对于每组测试数据, 第一行包含两个整数n,m,表示图的点数和边数。 下面m行,每行3个正整数u,v,c(1<=u,v<=n,0<=c<=106),表示有一条权为c的无向边(u,v) 接下来一行,包含一个整数q,表示询问的个数 下面q行,每行一个整数x,其含义同题目描述。
Output
对于每组测试数据,输出应包括q行,第i行表示第i个问题的答案。对于点对(p,q)和(q,p),只统计一次(见样例)。
两组测试数据之间用空行隔开。
Sample Input
5 0
1
0
Sample Output
【数据范围】
对于100%的数据 T<=10,n<=150,m<=3000,q<=30,x在32位有符号整数类型范围内。
图中两个点之间可能有多条边
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int oo=0x3f3f3f3f;
struct pnt{
int hd;
int lyr;
int now;
bool vis;
}p[];
struct ent{
int twd;
int lst;
int vls;
int his;
}e[];
int cnt;
int n,m;
int s,t;
int app[];
int tmp[];
int ans[][];
std::queue<int>Q;
void ade(int f,int t,int v)
{
cnt++;
e[cnt].twd=t;
e[cnt].vls=v;
e[cnt].his=v;
e[cnt].lst=p[f].hd;
p[f].hd=cnt;
return ;
}
bool Bfs(void)
{
while(!Q.empty())Q.pop();
for(int i=;i<=n;i++)
p[i].lyr=;
p[s].lyr=;
Q.push(s);
while(!Q.empty())
{
int x=Q.front();
Q.pop();
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].lyr==&&e[i].vls>)
{
p[to].lyr=p[x].lyr+;
if(to==t)
return true;
Q.push(to);
}
}
}
return false;
}
int Dfs(int x,int fll)
{
if(x==t)
return fll;
for(int& i=p[x].now;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].lyr==p[x].lyr+&&e[i].vls>)
{
int ans=Dfs(to,std::min(fll,e[i].vls));
if(ans>)
{
e[i].vls-=ans;
e[((i-)^)+].vls+=ans;
return ans;
}
}
}
return ;
}
int Dinic()
{
int ans=;
while(Bfs())
{
for(int i=;i<=n;i++)
p[i].now=p[i].hd;
int dlt;
while(dlt=Dfs(s,oo))
ans+=dlt;
}
return ans;
}
void dfs(int x)
{
if(p[x].vis)
return ;
p[x].vis=true;
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(e[i].vls>)
dfs(to);
}
return ;
}
void Build(int l,int r)
{
if(l==r)
return ;
s=app[l],t=app[r];
for(int i=;i<=cnt;i+=)
{
e[i].vls=e[i].his;
e[i+].vls=e[i+].his;
e[i+].vls=e[i+].his;
e[i+].vls=e[i+].his;
}
int tmf=Dinic();
for(int i=;i<=n;i++)
p[i].vis=false;
dfs(s);
for(int i=;i<=n;i++)
if(p[i].vis)
for(int j=;j<=n;j++)
if(!p[j].vis)
ans[i][j]=ans[j][i]=std::min(ans[i][j],tmf);
int i=l-,j=r+;
for(int k=l;k<=r;k++)
if(p[app[k]].vis)
tmp[++i]=app[k];
else
tmp[--j]=app[k];
for(int k=l;k<=r;k++)
app[k]=tmp[k];
Build(l,i);
Build(j,r);
return ;
}
int main()
{
// freopen("a.in","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
cnt=;
for(int i=;i<=n;i++)
app[i]=i,
p[i].hd=;
memset(ans,0x3f,sizeof(ans));
for(int i=;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
ade(a,b,c);
ade(b,a,c);
}
Build(,n);
int q;
scanf("%d",&q);
while(q--)
{
int x;
scanf("%d",&x);
int ansl=;
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
if(ans[i][j]<=x)
ansl++;
printf("%d\n",ansl);
}
puts("");
}
return ;
}
2229: [Zjoi2011]最小割(最小割树)的更多相关文章
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- 【BZOJ-2229】最小割 最小割树(最大流+分治)
2229: [Zjoi2011]最小割 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1565 Solved: 560[Submit][Status ...
- scu - 3254 - Rain and Fgj(最小点权割)
题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...
- 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流
最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...
- 3532: [Sdoi2014]Lis 最小字典序最小割
3532: [Sdoi2014]Lis Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 865 Solved: 311[Submit][Status] ...
- HDU 1394 Minimum Inversion Number(最小逆序数 线段树)
Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)
思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...
- BZOJ.2229.[ZJOI2011]最小割(最小割树)
题目链接 题意:给定一张无向图,求任意两点之间的最小割. 在所有点中任选两个点作为源点\(S\).汇点\(T\),求它们之间的最小割\(ans\),并把原图分成两个点集\(S',T'\),用\(ans ...
随机推荐
- NOIP2013 货车运输 倍增
问题描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能 ...
- Win 7系统倒计时!
3月25日消息,近日微软已经开始通知当前正在使用Windows 7的用户,该操作系统“接近尾声”.微软表示计划在2020年1月14日终止对Windows 7的所有支持.但结束Windows 7似乎并不 ...
- 紫书 习题 10-5 UVa 1213(01背包变形)
这里就是01背包多了一维物品个数罢了 记得不能重复所以有一层循环顺序要倒着来 边界f[0][0] = 1 #include<cstdio> #include<vector> # ...
- 今日SGU 5.25
SGU 194 题意:无源汇有上下界的最大流 收获:https://wenku.baidu.com/view/0f3b691c59eef8c75fbfb35c.html #include<bit ...
- glEnable(GL_DEPTH_TEST)作用
glEnable(GL_DEPTH_TEST): 用来开启更新深度缓冲区的功能,也就是,如果通过比较后深度值发生变化了,会进行更新深度缓冲区的操作.启动它,OpenGL就可以跟踪再Z轴上的像素,这样, ...
- 网络流 HDU 3549 Flow Problem
网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...
- KVM硬件辅助虚拟化之 EPT in Nested Virtualization
在嵌套虚拟环境(Nested Virtualization)下,执行在hypervisor上的Virtual Machine仍能够作为hypervisor去执行其他的Virutal Machine,而 ...
- bzoj 1010 (单调决策优化)
能够非常好的证明单调决策性质.用 记sum[i]=sigma(C[1],C[2].....C[k]);f[i]=sum[i]+i; c=l-1; 有转移dp[i]=min( dp[j]+(f[i ...
- Python带括号的计算器
带括号的计算器也是第一个自我感觉完成最好的 毕竟真的弄了一个多星期 虽然前期这路真的很难走 我会努力加油 将Python学好学踏实 参考了两位博主的文章 http://www.cnblogs.co ...
- Entity Framework之Code First开发方式
一.Code First Code First方式只需要代码,不需要Edmx模型.EF通过实体类型结构推断生成SQL并创建数据库中的表.开发人员只需要编写实体类就可以进行EF数据库的开发. Code ...