SGU 149

题意:求每一个点的距离最远距离的点的长度

收获:次大值和最大值,dfs

#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
#define all(a) a.begin(),a.end()
const int mod = 1e9+;
const int maxn = 1e4+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int mx[maxn][] = {};
vector<pii> G[maxn];
int dfs(int u,int p){
rep(i,,sz(G[u])){
int v=G[u][i].se,w=G[u][i].fi;
if(v==p) continue;
int tmp = dfs(v,u) + w;
rep(i,,) if(mx[u][i]<tmp) swap(mx[u][i],tmp);
}
return mx[u][];
}
void dp(int u,int p){
rep(i,,sz(G[u])){
int v=G[u][i].se,w=G[u][i].fi;
if(v==p) continue;
int tmp;
if(mx[v][] + w == mx[u][]) tmp = mx[u][] + w;
else tmp = mx[u][] + w;
rep(i,,) if(mx[v][i]<tmp) swap(mx[v][i],tmp);
dp(v,u);
}
}
int main(){
int n;
scanf("%d",&n);
rep(i,,n+){
int u,c;
scanf("%d%d",&u,&c);
G[u].pb(mp(c,i));
G[i].pb(mp(c,u));
}
dfs(,-);dp(,-);
rep(i,,n+) printf("%d\n",mx[i][]);
return ;
}

SGU 196

题意:求AT*A,Aij表示i这个顶点是否是j这个边的端点(是1,不是0)

收获:度是个好东西

#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
#define all(a) a.begin(),a.end()
const int mod = 1e9+;
const int maxn = 1e4+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int in[maxn];
int main(){
int n,m;
int u,v;
cin>>n>>m;
rep(i,,m){
scanf("%d%d",&u,&v);
in[u]++,in[v]++;
}
int ans = ;
rep(i,,n+) ans += in[i] * in[i];
printf("%d\n",ans);
return ;
}

SGU 302

题意:给你up和down就是up区间里变大写,down变小写

收获:栈

#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
#define all(a) a.begin(),a.end()
const int mod = 1e9+;
const int maxn = 1e3+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
char s[maxn];
int st[maxn],r=;
char up(char c){
if(c>='A'&&c<='Z') return c;
return c - 'a' + 'A';
}
char down(char c){
if(c>='a'&&c<='z') return c;
return c - 'A' + 'a';
}
int main(){
scanf("%s",s+);
int len = strlen(s+);
rep(i,,len+){
if(s[i]=='<'){
if(s[i+]=='/') {
r--;
if(s[i+]=='D') i += ;
else i += ;
}else if(s[i+]=='D'){
i += ;
st[++r] = ;
}else {
i += ;
st[++r] = ;
}
i++;
continue;
}
if(!r){
printf("%c",s[i]);
}else if(st[r]==){
printf("%c",down(s[i]));
}else {
printf("%c",up(s[i]));
}
}
return ;
}

今日SGU 5.12的更多相关文章

  1. 今日SGU 6.6

    sgu 177 题意:给你一个一开始全是白色的正方形,边长为n,然后问你经过几次染色之后,最后的矩形里面 还剩多少个白色的块 收获:矩形切割,我们可以这么做,离散处理,对于每次染黑的操作,看看后面有没 ...

  2. 今日SGU 6.5

    sgu 160 题意:给你n个数字 数字范围 1 到 m 问你从中取出任意数量的数字使得这些数字的积取模m最大 收获:dp,记录dp的路径 #include<bits/stdc++.h> ...

  3. 今日SGU 5.30

    SGU 190 题意:给你个n*n的矩形,然后上面有几个点不能放东西,然后问你能不能用1*2的矩形,把能放 东西的地方放满 收获:一开始想的是,dfs,然后感觉这样的话,代码很长,而且很容易超时, 看 ...

  4. 今日SGU 5.29

    sgu 299 题意:给你n个线段,然后问你能不能选出其中三个组成一个三角形,数字很大 收获:另一个大整数模板 那么考虑下为什么如果连续三个不可以的话,一定是不存在呢? 连续上个不合法的话,一定是 a ...

  5. 今日SGU 5.28

    SGU 121 题意:给你一张图,问你每个顶点必须有黑白两条边(如果它的边数>=2),问你怎么染色,不行就输出no 收获:你会发现不行的情况只有一个单纯的奇数环的时候,反之我们交替染色即可 #i ...

  6. 今日SGU 5.27

    SGU 122 题意:给你n个人,每个人有大于 N / 2(向上取整)的朋友,问你1这个人有一个书,每个人都想看,只能从朋友之间传递,然后最后回到了1这个人,问你 是否有解,然后有解输出路径 收获:哈 ...

  7. 今日SGU 5.26

    #include<bits/stdc++.h> #define de(x) cout<<#x<<"="<<x<<endl ...

  8. 今日SGU 5.25

    SGU 194 题意:无源汇有上下界的最大流 收获:https://wenku.baidu.com/view/0f3b691c59eef8c75fbfb35c.html #include<bit ...

  9. 今日SGU 5.23

    SGU 223 题意:给你n*n的矩形,放k个国王,每个国王不能放在别的国王的8连边上,问你有多少种方法 收获:状态DP,因为每行的放置只会影响下一行,然我们就枚举每行的状态和对应的下一行的状态,当两 ...

随机推荐

  1. 联想 M415 I3-6100 CPU安装系统方法

    问题: 直接用PE GHOST系统后,USB无法使用,导致鼠标.U盘也无法使用 即 无法安装驱动.软件等 方法: 1.按网上方式,安装集成USB3.0的PE系统 2. 直接用PS2鼠标安装

  2. python常用函数库收集。

    学习过Python都知道python中有很多库.python本身就是万能胶水,众多强大的库/模块正是它的优势. 收集一些Python常用的函数库,方便大家选择要学习的库,也方便自己学习收集,熟悉运用好 ...

  3. Git 服务器更换了IP的解决方法

    1.找到项目根目录中的.git文件夹 2..git文件夹里有一个config文件 3.用记事本打开后,修改为服务器的新ip就行了.

  4. Android中图片优化之webp使用

    博客出自:http://blog.csdn.net/liuxian13183,转载注明出处! All Rights Reserved ! 有关图片的优化,通常我们会用到LruCache(使用强引用.强 ...

  5. 洛谷——P3368 【模板】树状数组 2

    https://www.luogu.org/problem/show?pid=3368 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的和 输入 ...

  6. hdu 1005 Number Sequence(矩阵连乘+二分快速求幂)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1005 代码: #include<iostream> #include<stdio.h&g ...

  7. [React] Implement a Higher Order Component with Render Props

    When making a reusable component, you'll find that people often like to have the API they're most fa ...

  8. IDEA中的maven web 项目中如何设置自己的本地仓库

    我们在创建maven项目的时候如何不使用系统指定的本地仓库,而使用自己设置的仓库呢,这里小女子就来进行讲解一下吧! 讲解一:你要想找到settings.xml你就要自己我去官网上去下载apache-m ...

  9. 七牛用户搭建c# sdk的图文讲解

    Qiniu 七牛问题解答 问题描写叙述:非常多客户属于小白类型. 可是请不要随便喷七牛的文档站.由于须要一点http的专业知识才干了解七牛的api文档.如今我给大家弄个c# sdk的搭建步骤 问题解决 ...

  10. VC双缓冲画图技术介绍

    双缓冲画图,它是一种主要的图形图像画图技术.首先,它在内存中创建一个与屏幕画图区域一致的对象,然后将图形绘制到内存中的这个对象上,最后把这个对象上的图形数据一次性地拷贝并显示到屏幕上. 这样的技术能够 ...