传送门

题意:

Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路。N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a,b),(c,d)表示,对于任意两个国家x,y,如果a<=x<=b,c<=y<=d,那么在xy之间建造一条道路。Seter保证一条道路不会修建两次,也保证不会有一个国家与自己之间有道路。

Seter好不容易建好了所有道路,他现在在位于P号的首都。Seter想知道P号国家到任意一个国家最少需要经过几条道路。当然,Seter保证P号国家能到任意一个国家。

分析:

直接建边空间会达到\(n^2m\)。于是可以线段树来优化:两颗线段树:进树,出树。(下面括号代表边权)

进树: 从父亲向儿子连边(0),表示能达到该区间就能达到该区间的子区间。

出树:从儿子向父亲连边(0),表示能从该区间出发就能从该区间的父区间出发。

两树之间

  • 进树向出树的对应区间连边(0),表示到达该区间后,还能从该区间继续出发。
  • 对于给出的边,从出树中找到对应区间,向新建的超级点连边(0),从超级点向进树的对应区间连边(1),由于是无向边,要连加两次。

例如5个节点中连边[2, 3] <----> [4, 5](此处就只连单向边示意):

最后起点直接从出树向入树连边(因为根本不用走)。

剩下的就是dijsktra,答案就是进树的叶子节点距离。

code

#include<bits/stdc++.h>
using namespace std;
namespace IO {
template<typename T>
inline void read(T &x) {
T i = 0, f = 1;
char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') f = -1, ch = getchar();
for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
x = i * f;
}
template<typename T>
inline void wr(T x) {
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
} using namespace IO; const int N = 5e5 + 50, M = 1e5 + 50, OO = 0x3f3f3f3f;
int n, m, p, dis[N * 10];
typedef pair<int, int> P;
vector<P> G[N * 10];
int tot, SuperPoint;
priority_queue<P, vector<P>, greater<P> > que;
bool vst[N * 10]; inline void addEdge(int u, int v, int c){
G[u].push_back(P(v, c));
}
struct SegTree{
int num[N * 4];
inline void Build(int k, int l, int r, int type){
num[k] = ++tot;
if(l == r) return;
int mid = l + r >> 1, lc = k << 1 , rc = k << 1 | 1;
Build(lc, l, mid, type), type == 1 ? addEdge(num[lc], num[k], 0) : addEdge(num[k], num[lc], 0);
Build(rc, mid + 1, r, type), type == 1 ? addEdge(num[rc], num[k], 0) : addEdge(num[k], num[rc], 0);
}
inline void BuildEdge(int k, int l, int r, int x, int y, int v, int type){
if(x <= l && r <= y) {
type == 1 ? addEdge(num[k], SuperPoint, v) : addEdge(SuperPoint, num[k], v);
return;
}
int mid = l + r >> 1, lc = k << 1 , rc = k << 1 | 1;
if(x <= mid) BuildEdge(lc, l, mid, x, y, v, type);
if(y > mid) BuildEdge(rc, mid + 1, r, x, y, v, type);
}
inline int getNum(int k, int l, int r, int pp){
if(l == r) return num[k];
int mid = l + r >> 1, lc = k << 1 , rc = k << 1 | 1;
if(pp <= mid) return getNum(lc, l, mid, pp);
else return getNum(rc, mid + 1, r, pp);
}
}SegIn, SegOut;
int debug[N * 18];
inline void DJ(int p){
memset(dis, 0x3f, sizeof dis);
dis[p] = 0;
que.push(P(0, p));
while(!que.empty()){
P t = que.top();que.pop();
int u = t.second;
if(vst[u]) continue;
vst[u] = true;
for(int e = G[u].size() - 1; e >= 0; e--){
int v = G[u][e].first;
// cout<<u<<"-------->"<<v<<endl;
if(!vst[v] && dis[v] > dis[u] + G[u][e].second){
dis[v] = dis[u] + G[u][e].second;
debug[v] = u;
que.push(P(dis[v], v));
}
}
// cout<<endl;
}
} inline void BuildEdgeBet(int k, int l, int r){
addEdge(SegIn.num[k], SegOut.num[k], 0);
if(l == r) return;
int mid = l + r >> 1, lc = k << 1 , rc = k << 1 | 1;
BuildEdgeBet(lc, l, mid);
BuildEdgeBet(rc, mid + 1, r);
} inline void getAns(int k, int l, int r){
if(l == r){
wr(dis[SegIn.num[k]]), putchar('\n');
return;
}
int mid = l + r >> 1, lc = k << 1 , rc = k << 1 | 1;
getAns(lc, l, mid);
getAns(rc, mid + 1, r);
} int main(){
freopen("h.in" ,"r", stdin);
freopen("h.out", "w", stdout);
read(n), read(m), read(p);
SegIn.Build(1, 1, n, 2);
SegOut.Build(1, 1, n, 1);
SuperPoint = tot;
for(int i = 1; i <= m; i++){
int a, b, c, d;
read(a), read(b), read(c), read(d);
SuperPoint++;
SegOut.BuildEdge(1, 1, n, a, b, 0, 1);
SegIn.BuildEdge(1, 1, n, c, d, 1, 2);
SuperPoint++;
SegOut.BuildEdge(1, 1, n, c, d, 0, 1);
SegIn.BuildEdge(1, 1, n, a, b, 1, 2); }
BuildEdgeBet(1, 1, n);
int pos1 = SegOut.getNum(1, 1, n, p), pos2 = SegIn.getNum(1, 1, n, p);
addEdge(pos1, pos2, 0);
// for(int i = 0; i <= tot; i++){
// cout<<i<<":";for(int j = 0; j < G[i].size(); j++) cout<<G[i][j].first<<" ";
// cout<<endl;
// }
DJ(pos1);
getAns(1, 1, n);
// int now = SegIn.getNum(1, 1, n, 1);
// do{
// cout<<now<<"<-----";
// now = debug[now];
// }while(now);
return 0;
}

BZOJ3073 Journeys - 线段树优化建边的更多相关文章

  1. bzoj3073: [Pa2011]Journeys 线段树优化建图

    bzoj3073: [Pa2011]Journeys 链接 BZOJ 思路 区间和区间连边.如何线段树优化建图. 和单点连区间类似的,我们新建一个点,区间->新点->区间. 又转化成了单点 ...

  2. BZOJ 3073: [Pa2011]Journeys Dijkstra+线段树优化建图

    复习一下线段树优化建图:1.两颗线段树的叶子节点的编号是公用的. 2.每次连边是要建两个虚拟节点 $p1,p2$ 并在 $p1,p2$ 之间连边. #include <bits/stdc++.h ...

  3. 【BZOJ4383】[POI2015]Pustynia 线段树优化建图

    [BZOJ4383][POI2015]Pustynia Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r ...

  4. AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图

    AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...

  5. loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点

    loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...

  6. bzoj4383 [POI2015]Pustynia 拓扑排序+差分约束+线段树优化建图

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4383 题解 暴力的做法显然是把所有的条件拆分以后暴力建一条有向边表示小于关系. 因为不存在零环 ...

  7. BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图

    Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...

  8. codeforces 787D - Legacy 线段树优化建图,最短路

    题意: 有n个点,q个询问, 每次询问有一种操作. 操作1:u→[l,r](即u到l,l+1,l+2,...,r距离均为w)的距离为w: 操作2:[l,r]→u的距离为w 操作3:u到v的距离为w 最 ...

  9. Codeforces 1045A Last chance 网络流,线段树,线段树优化建图

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1045A.html 题目传送们 - CF1045A 题意 你有 $n$ 个炮,有 $m$ 个敌人,敌人排成一 ...

随机推荐

  1. [CSS] Build a Fluid Loading Animation in CSS

    In this lesson, we will create a fluid loading animation using Animations and Transformations in CSS ...

  2. arcgis webapp builder 安装试用

    ArcGIS WebApp Builder 是针对开发者的,用于高速构建基于HTML5/Javascript 技术的美观的 Web应用的一个工具. 用过Flex版本号的AppBuilder应该非常清楚 ...

  3. Python基础教程之第1章 基础知识

    #1.1 安装Python #1.1.1 Windows #1.1.2 Linux和UNIX #1.1.3 Macintosh #1.1.4 其它公布版 #1.1.5 时常关注.保持更新 #1.2 交 ...

  4. 绝对定位等html结构,水平居中的处理方案

    1.父子结构,父relative,子absolute.子元素要水平居中:left:50%:margin-left:子元素一半的宽度.因为定位的left是按左边框开始计算.[固定问题的模块化解决]

  5. robotframework Selenium2+RFS自动化测试

    支持浏览器版本:Google Chrome (64位) 52.0.2743.82 正式版 52.0.2743.6_chrome_installer 64位 下载地址:http://www.online ...

  6. amazeui学习笔记--css(常用组件2)--面包屑导航Breadcrumb

    amazeui学习笔记--css(常用组件2)--面包屑导航Breadcrumb 一.总结 1.am-breadcrumb:用am-breadcrumb来声明面包屑导航控件,.am-breadcrum ...

  7. Altium Designer中距离的测量

    Ctrl+M 清除测量标签:点击右下角的清除按键

  8. HDU 2063 过山车 第一道最大二分匹配

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 题目大意: m个女生和n个男生一起做过山车,每一排必须一男一女,而每个女孩愿意和一些男生坐一起,, 你要找 ...

  9. 【零基础入门学习Python笔记012】一个打了激素的数组3

    列表的一些经常使用操作符 比較操作符 逻辑操作符 连接操作符 反复操作符 成员关系操作符 +表示两个连接.*表示复制. list中"+"两边的类型必须一致. 演示样例: water ...

  10. MVC+EasyUI实现查询显示到对应表格

    这里要说的显示界面是Razor页面.我们要使用easyui首先应该在界面中加入对应的引用,例如以下代码,这些都是必要的引用文件,能够依据自己所存放的路径来加入src地址. @*加入Jquery Eas ...