思路:

$x^2+y^2=r^2$
$y=\sqrt{(r+x)(r-x)}$
令$ d=gcd(r+x,r-x)$
设A=$(r-x)/d$   $B=(r+x)/d$
则$gcd(A,B)=1$
$y^2=d^2*A*B$
∵$d、y$为完全平方数、$gcd(A,B)=1$、且$A!=B$(在坐标轴上的最后算)
∴$A、B$为完全平方数
设$a^2=(r+x)/d  b^2=(r-x)/d$
则$a^2+b^2=2r/d$
即d是2r的约数
那我们就$1到\sqrt{2r}$枚举约数
再枚举a (从$\sqrt{r/d}$枚举到$\sqrt{2r/d}$) $a^2=(r+x)/d$
$b^2=(r-x)/d=2r/d-a^2$
判断一下$gcd(a^2,b^2)$是不是等于1且$a!=b!=0$且$\sqrt{b}^2==b$
最后答案就是ans*4(四个象限)+4(坐标轴上的)

//By SiriusRen
#include <cmath>
#include <cstdio>
using namespace std;
#define int long long
int r,ans;
int gcd(int x,int y){return y?gcd(y,x%y):x;}
void solve(int d){
int lst=sqrt(*r/d),fst=sqrt(r/d);
if(fst*fst<r/d)fst++;
for(int a=fst;a<=lst;a++){
int sqrb=*r/d-a*a,b=sqrt(sqrb);
if(a&&b&&b*b==sqrb&&a!=b&&gcd(a*a,sqrb)==)ans++;
}
}
signed main(){
scanf("%lld",&r);
int sqr=sqrt(*r);
for(int d=;d<=sqr;d++)if((*r)%d==)solve(d),solve(*r/d);
printf("%lld\n",ans*+);
}

BZOJ 1041 数学的更多相关文章

  1. bzoj 1041 数学推理

    原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1041 我们只需要求第一象限内(不包括坐标轴)的点数然后ans=ans*4+4就好了 首先我 ...

  2. bzoj 5334 数学计算

    bzoj 5334 数学计算 开始想直接模拟过程做,但模数 \(M\) 不一定为质数,若没有逆元就 \(fAKe\) 掉了. 注意到操作 \(2\) 是删除对应的操作 \(1\) ,相当于只有 \(1 ...

  3. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  4. BZOJ 1041 [HAOI2008]圆上的整点:数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  5. BZOJ 1041 圆上的整点 数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1041 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整 ...

  6. BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  7. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  8. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  9. bzoj 1041 圆上的整点 分类: Brush Mode 2014-11-11 20:15 80人阅读 评论(0) 收藏

    这里先只考虑x,y都大于0的情况 如果x^2+y^2=r^2,则(r-x)(r+x)=y*y 令d=gcd(r-x,r+x),r-x=d*u^2,r+x=d*v^2,显然有gcd(u,v)=1且u&l ...

随机推荐

  1. windows server 2012 r2 安装无法找到install.wim 错误代码0x80070026,以及制作U启动盘决解ISO文件超过5G大小限制的解决方案(转)

    戴尔服务器r530 windows server 2012 r2 安装无法找到install.wim 错误代码0x80070026,以及制作U启动盘决解ISO文件超过5G大小限制的解决方案 关于在服务 ...

  2. VTK嵌入MFC同步显示

    使用VTK嵌入MFC,实现四视图更新,机制和细节参考原文. 原文链接:http://blog.csdn.net/www_doling_net/article/details/8939115 原文代码: ...

  3. Vue2 封装的 Quill 富文本编辑器组件 Vue-Quill-Editor

    1.安装 npm install vue-quill-editor --save 2.使用 import { quillEditor } from 'vue-quill-editor' 3.组件中 & ...

  4. php多进程防止出现僵尸进程

    对于用PHP进行多进程并发编程,不可避免要遇到僵尸进程的问题. 僵尸进程是指的父进程已经退出,而该进程dead之后没有进程接受,就成为僵尸进程(zombie)进程.任何进程在退出前(使用exit退出) ...

  5. Django 路由视图FBV/CBV

    路由层  url路由层结构 from django.conf.urls import url from django.contrib import admin from app01 import vi ...

  6. TFS代码迁移Git

    描述 将TFS上的代码迁移到Git做版本控制. 参考地址 tfs-git下载:https://github.com/git-tfs/git-tfs/releases chocolatey安装:http ...

  7. fzu 2132

    #include<stdio.h> double h; double tt; void s(long long m,long long n) { long long i,j,sum; j= ...

  8. [bzoj1500][NOI2005]维修数列_非旋转Treap

    维修数列 bzoj-1500 NOI-2005 题目大意:给定n个数,m个操作,支持:在指定位置插入一段数:删除一个数:区间修改:区间翻转.查询:区间和:全局最大子序列. 注释:$1\le n_{ma ...

  9. 使用URL在线语音合成

    近期一直在做手机的项目,用到了语音合成与识别的功能.就找了几个网址做了分析,这里只实现了内容的合成.并不包括语音识别. 首先看一下谷歌的语音合成地址: http://translate.google. ...

  10. php简单的连接数据库

    <?php $conn=@mysql_connect("localhost","root","") or die ("no& ...