题意

题解

首先吐槽一下体面的第一句话。反正我不知道(可能是因为我太菜了)

可能没有睡醒,没看出来是个背包。

但告诉是个背包了应该就好做了。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int t,n;
int dp[][];
int main(){
dp[][]=;
for(int i=;i*i<=;i++)
for(int j=i*i;j<=;j++)
for(int l=;l<=;l++){
dp[j][l]+=dp[j-i*i][l-];
}
scanf("%d",&t);
while(t--){
scanf("%d",&n);
printf("%d\n",dp[n][]+dp[n][]+dp[n][]+dp[n][]);
}
return ;
}

luogu P1586 四方定理(背包)的更多相关文章

  1. 洛谷——P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...

  2. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  3. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  4. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. 【Luogu】P1586四方定理(DP)

    题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...

  6. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  7. 四方定理(递归) --java

    四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...

  8. java实现第二届蓝桥杯四方定理

    四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...

  9. [luoguP1586] 四方定理(DP 背包)

    传送门 相当于背包, f[i][j] 表示当前数为 i,能分解成 j 个数的平方的和的数量 那么就是统计背包装物品的数量 ——代码 #include <cmath> #include &l ...

随机推荐

  1. Eclipse中合并GIT分支

    合并GIT分支: 1.  切换到主分支: 2.  右击项目——Team——Merge…: 3.  在弹出的Merge框中选择要合并的分支——Merge: 4.  合并后如果出现冲突,右击项目——Tea ...

  2. JavaScript中的“闭包”

    什么是JavaScript中的“闭包”?举一个例子. 闭包是一个内部函数,它可以访问外部(封闭)函数的作用域链中的变量.闭包可以访问三个范围内的变量;具体来说: (1)变量在其自己的范围内, (2)封 ...

  3. 异构关系数据库(Sqlserver与Oracle)之间的数据类型转换参考

    一.Oracle到SqlServer的数据类型的转变 编号 Oracle ToSqlServer SqlServer 1 BINARY_DOUBLE VARCHAR(100) real 2 BINAR ...

  4. 【codeforces 746E】Numbers Exchange

    [题目链接]:http://codeforces.com/problemset/problem/746/E [题意] 你有n张卡片,上面写着不同的数字; 然后另外一个人有m张上面写着不同的数字的卡片: ...

  5. cogs 2060. 除法表达式

    2060. 除法表达式 ★★   输入文件:baoquansl.in   输出文件:baoquansl.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 经过无尽的蘑菇和 ...

  6. spring boot pom

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  7. ZOJ 3688

    做出这题,小有成就感 本来已打算要用那个禁位的排列公式,可是,问题在于,每个阶乘前的系数r的求法是一个难点. 随便翻了翻那本美国教材<组合数学>,在容斥原理一章的习题里竟有一道类似,虽然并 ...

  8. FZU_Problem 2168 防守阵地 I

    Problem 2168 防守阵地 I Accept: 128 Submit: 392 Time Limit: 3000 mSec Memory Limit : 32768 KB Problem De ...

  9. IE input X 去掉文本框的叉叉和password输入框的眼睛图标

    IE input X 去掉文本框的叉叉和password输入框的眼睛图标 从IE 10開始,type="text" 的 input 在用户输入内容后.会自己主动产生一个小叉叉(X) ...

  10. C++ 虚函数的缺省參数问题

    前些日子,有个同学问我一个关于虚函数的缺省參数问题.他是从某个论坛上看到的.可是自己没想通.便来找我. 如今分享一下这个问题.先看一小段代码: #include <iostream> us ...