1、通过本征向量和本征值求主成分

关系:本征值是本征向量的缩放倍数,本征值大的对应的本征向量上的样本的数目就越多;相反本征值越小的,就本征向量上的样本数量就会少。因此可以求出PCA的主成分

主成分分析:主成分大小和本征值的区别在于数据分布所在的“椭圆”的轴的长度是正比于本征值开根号(标准差),不是本征值本身,也就是说本征值越大,分布在该轴上的数据就会越多

2、PCA通过主成分分析降维的思想(用于数据具有很强相关性)

(1)、先对数据进行去均值:求每一列中的平均值,然后再用该平均值将去该列的元素

(2)、每一行去均值之后,然后每个列元素都除于该列的标准差(这一步视情况而定)

(3)、求该矩阵的协方差矩阵

(4)、求协方差矩阵的本征向量和本征值

(5)、取本征值大的对应的本征向量

(6)、将这些本征向量组成一个新的矩阵

(7)、然后利用这个新的矩阵乘于原始的数据矩阵就能实现PCA降维

PCA一些性质的定性理解的更多相关文章

  1. 主成分分析(PCA)的一种直观理解

    源自知乎的一个答案,网上很多关于PCA的文章,不过很多都只讲到了如何理解方差的投影,却很少有讲到为什么特征向量就是投影方向.本文从形象角度谈一谈,因为没有证明,所以不会严谨,但是应该能够帮助形象理解P ...

  2. 【笔记】使用PCA对数据进行降噪(理解)

    使用PCA对数据进行降噪(使用手写数字实例) (在notebook中) 加载库并制作虚拟的数据并进行绘制 import numpy as np import matplotlib.pyplot as ...

  3. PCA vs Linear Regression 可视化理解

    https://shankarmsy.github.io/posts/pca-vs-lr.html https://shapeofdata.wordpress.com/2013/04/09/princ ...

  4. PCA 从线性变换的角度理解

  5. Principal components analysis(PCA):主元分析

    在因子分析(Factor analysis)中,介绍了一种降维概率模型,用EM算法(EM算法原理详解)估计参数.在这里讨论另外一种降维方法:主元分析法(PCA),这种算法更加直接,只需要进行特征向量的 ...

  6. PCA算法的最小平方误差解释

    PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...

  7. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  8. 《深入理解JAVA虚拟机》笔记1

    java程序运行时的内存空间,按照虚拟机规范有下面几项: )程序计数器 指示下条命令执行地址.当然是线程私有,不然线程怎么能并行的起来. 不重要,占内存很小,忽略不计. )方法区 这个名字很让我迷惑. ...

  9. PCA和PCoA

    讲解很详细:http://blog.genesino.com/2016/10/PCA/ PCA分析一般流程: 中心化(centering, 均值中心化,或者中位数中心化),定标(scale,如果数据没 ...

随机推荐

  1. Thingworx新建Thing的数据库表变化

    为了在Thingworx的基础上建立统一的可视化平台,并且对软件产品具有自主控制权,不依赖于Thingworx软件(防止因Thingworx的升级.Bug导致的自主扩展功能受制),所以最近在研究Thi ...

  2. ZBrush 4R7中自定义笔刷

    为了便于雕刻,ZBrush®很人性化地设计了自定义笔刷.随着ZBrush软件版本不断更新,功能也在不断完善.只是在笔刷面板ZBrush软件就为用户提供了上百种之多,如果我们想要用某种笔刷,一个个找起来 ...

  3. jsp+jdbc实现用户登录

    1.1 创建数据库表 表名:user 字段: userid   保存用户的登录id name     用户名 password 密码 1.2 实现思路 a. 用户登录,则需要有个一个表单页,此页面可输 ...

  4. 发个ZKW线段树板子测试一下代码高亮

    是我,Long time no see          --Jim 先安利 Wolves  歌手:Madilyn Bailey http://music.163.com/song/524149464 ...

  5. ansible shell模块

    [root@ftp:/root] > ansible ansible01 -u root -k -m shell -a 'hostname' SSH password: ansible01 | ...

  6. V4L2驱动程序架构

    1 V4L2简介 video4linux2(V4L2)是Linux内核中关于视频设备的内核驱动,它为Linux中视频设备访问提供了通用接口,在Linux系统中,V4L2驱动的Video设备节点路径通常 ...

  7. JavaScript中的基础测试题

                                                                                                    Java ...

  8. 【 【henuacm2016级暑期训练】动态规划专题 P】Animals

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 第i只动物如果饲养它的话. 代价是固定的就是(n-i+1)a[i] 所以相当于给你n个物品,每个物品的重量为(n-i+1)a[i], ...

  9. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

  10. HDU 4314 Contest 2

    可以知道,逃出的人中,最后一个应当是A+B最长的,这是很容易发现的.那么,最选逃出去的必定是A+B最短的.这符合最优. 于是,可以把各小矮人按A+B的和由大到小排序.定义DP[i][j]为i个人中逃出 ...