紫书 习题8-3 UVa 12545 (构造法)
参考了https://blog.csdn.net/catglory/article/details/47188949
最后推出来操作的个数为问号的个数 加上 同一位置上S串为0而T串为1的位置数量
与 同一位置上S串为1而T串为0的位置数量的最大值。
也就是max(ans1 + ans2) + que (que为问号总数, 而ans1和ans2意义如上)
这个公式应该是众多博客里面最简单的了, 让我一步一步推给你看
首先判断可不可行, 如果S串1大于T串中1的个数那么就永远不行
因为S串中1的个数只能增加(0变成1或者问号变成1), 不能减少。
所以导致了S串中1的个数永远大于T串中1的个数, 自然不管怎么变永远不能相等
然后考虑怎么变
首先问号变成数字最多可以消去1个差异, 0变成1也是最多消去1个差异, 而交换可以消除两个差异
所以尽量交换, 能交换就交换。
所以第一步就是先尽量交换, 问号先不理它。
交换的操作数怎么求?
交换的时候把0和1交换位置使得相同, 也就是说要“配对”, 也就是一对同一位置上S串是0而T
串是1和同一位置上S串是1而T串是0的两个位置, 这个时候可以交换, 然后位置就匹配上了。
所以我们就要找这样子有几对。
显然, 我们可以求出同一位置上S串是0而T串的位置数ans1, 和同一位置上S串是1而T串为0的位置数
ans2, 那么既然要“配对”, 那么对数就是两者的最小值,多余的后面再处理。
也就是对数 = min(ans1 + ans2)
好了, 交换完了之后,差异有两个, 一个是问号, 一个是交换下来多出的位置。
问号的操作数到最后会加上。
多出的位置要不全是S串为0, T串为1, 要不全是S串为1, T串为0 要不刚好匹配完。
(1)刚好匹配完(ans1 = ans2), 那就把问号全部变成与T串该位置的数字一样就可以了。
那么此时ans1 = ans2, 也就是配对消耗的操作 = min(ans1 + ans2) = ans1(或ans2, 无所谓)
所以总操作数= 配对消耗的操作+问号变化的操作 = ans1 + que(que为问号数)
显然开头那个式子是可以使用这种情况的, 也就是max(ans1 + ans2) + que = ans1 + que
(2)如果匹配完多余的是同一位置上S串为0T串为1(ans1 >ans2)。
那么显然, 把0变成1, 而问号变成T串上该位置的数字
那么额外的操作数就是0变成1, 也就是配对完多余的数目, 也就是ans1 - ans2
所以总操作数 = 配对消耗的操作+问号变化的操作 + 0变成1的操作数
=min(ans1, ans2) + ans1 - ans2 + que
= ans2 + ans1 - ans2 + que
= ans1 + que
这里的ans1是ans1和ans2中的最大值。
所以符合开头讲的式子
(3)如果匹配完多余的是同一位置上S串为1T串为0(ans1 < ans2)。
那么这个时候就只有替换一种可能了(因为只能0变成1不能1变成0)
那么替换哪里的呢, 前面替换好了不动, 那么就替换问号, 问号中
同一位置是1的, 把问号变成0, 然后0和上面说的1替换, 就匹配成功了
所以这个时候的操作数就是多余的个数, 也就是(ans2 - ans1)。
所以总操作数 = ans1 + ans2 - ans1 + que = ans2 +que
ans2依然是ans1和ans2中的最大值, 同理就可以得出开头那个式子。
呼~终于写完了, 真的是大道至简, 推到最后的式子非常的简单。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 112;
char s[MAXN], t[MAXN];
int main()
{
int T, kase = 0;
scanf("%d", &T);
while(T--)
{
int s1 = 0, t1 = 0, ans1 = 0, ans2 = 0, que = 0;
scanf("%s%s", s, t);
REP(i, 0, strlen(s))
{
if(s[i] == '1') s1++;
if(t[i] == '1') t1++;
if(s[i] == '?') que++;
if(s[i] != t[i] && s[i] == '1') ans1++;
if(s[i] != t[i] && s[i] == '0') ans2++;
}
if(s1 > t1) printf("Case %d: -1\n", ++kase);
else printf("Case %d: %d\n", ++kase, que + max(ans1, ans2));
}
return 0;
}
紫书 习题8-3 UVa 12545 (构造法)的更多相关文章
- 紫书 习题8-7 UVa 11925(构造法, 不需逆向)
这道题的意思紫书上是错误的-- 难怪一开始我非常奇怪为什么第二个样例输出的是2, 按照紫书上的意思应该是22 然后就不管了,先写, 然后就WA了. 然后看了https://blog.csdn.net/ ...
- 紫书 习题 8-24 UVa 10366 (构造法)
又是一道非常复杂的构造法-- #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a) ...
- 紫书 习题 11-8 UVa 1663 (最大流求二分图最大基数匹配)
很奇怪, 看到网上用的都是匈牙利算法求最大基数匹配 紫书上压根没讲这个算法, 而是用最大流求的. 难道是因为第一个人用匈牙利算法然后其他所有的博客都是看这个博客的吗? 很有可能-- 回归正题. 题目中 ...
- 紫书 习题 11-9 UVa 12549 (二分图最小点覆盖)
用到了二分图的一些性质, 最大匹配数=最小点覆盖 貌似在白书上有讲 还不是很懂, 自己看着别人的博客用网络流写了一遍 反正以后学白书应该会系统学二分图的,紫书上没讲深. 目前就这样吧. #includ ...
- 紫书 习题 8-21 UVa 1621 (问题分析方法)
知道是构造法但是想了挺久没有什么思路. 然后去找博客竟然只有一篇!!https://blog.csdn.net/no_name233/article/details/51909300 然后博客里面又说 ...
- 紫书 习题8-12 UVa 1153(贪心)
本来以为这道题是考不相交区间, 结果还专门复习了一遍前面写的, 然后发现这道题的区间是不是 固定的, 是在一个范围内"滑动的", 只要右端点不超过截止时间就ok. 然后我就先考虑有 ...
- 紫书 习题 11-17 UVa 1670 (图论构造)
一开始要符合题目条件, 那么肯定没有任何一个点是孤立的, 也就是说没有点的度数是1 所以我就想让度数是1的叶子节点相互连起来.然后WA 然后看这哥们的博客 https://blog.csdn.net/ ...
- 紫书 习题 8-22 UVa 1622 (构造法)
这道题的构造法真的复杂--要推一堆公式--这道题写了几天了--还是没写出来-- 一开始简单的觉得先左右来回, 然后上下来回, 然后把剩下的执行完了好了, 然后就WA. 然后换了个思路, 觉得是贪心, ...
- 紫书 习题 11-15 UVa 1668 (图论构造法)
参考了http://www.bubuko.com/infodetail-1276416.html 首先是逆向思维, 向把每条边看作一条路径, 然后再去合并 然后我们讨论怎么样合并时最优的 我们讨论当前 ...
随机推荐
- 算法21----重塑矩阵 LeetCode566
1.题目 在MATLAB中,有一个非常有用的函数 reshape,它可以将一个矩阵重塑为另一个大小不同的新矩阵,但保留其原始数据. 给出一个由二维数组表示的矩阵,以及两个正整数r和c,分别表示想要的重 ...
- python之类的组合
类的组合 学校与课程没有共同点,课程与老师没有共同点,但是学校与课程有关联,课程与老师有关联:学校.课程.老师是三个完全不同的类:课程是属于学校的,老师是教课程的,此时我们就用到类的组合来关联,学校- ...
- web自动化-selenium2入门讲解(mac版本)
最近要做一个selenium2的分享,于是总结了下我用selenium2的感受,希望分享出来,可以对入门的小伙伴有一点帮助,也希望得到大佬的指教 一,环境搭建maven+selenium2+tes ...
- django-2-路由配置及渲染方式
<<<视图>>> (1)首先要注册创建好的app (2)配置路由 在app目录下新建一个urls.py模块 模块里面复制myproject目录下urls.py里面的 ...
- 【henuacm2016级暑期训练-动态规划专题 B】Coloring Trees
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] f[i][j][k]前i个位置,第i个位置放j这个颜色,然后形成了k个联通块的最小花费 分第i个位置有没有已经放颜色两种情况考虑. ...
- UVALIVE 4256 Salesmen
Salesmen Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. Original ...
- Run Nutch In Eclipse on Linux and Windows nutch version 0.9
Running Nutch in Eclipse Here are instructions for setting up a development environment for Nutch un ...
- hdu5389(DP)
题意: 给出n个人的id,有两个门,每一个门有一个标号.我们记作a和b,如今我们要将n个人分成两组,进入两个门中,使得两部分人的标号的和(迭代的求,直至变成一位数.我们姑且叫做求"和&quo ...
- web服务启动spring自己主动运行ApplicationListener的使用方法
我们知道.一般来说一个项目启动时须要载入或者运行一些特殊的任务来初始化系统.通常的做法就是用servlet去初始化.可是servlet在使用spring bean时不能直接注入,还须要在web.xml ...
- Revit二次开发实现BIM盈利(以橄榄山快模为例解说) 视频讲座下载
应笔墨闲谈群的邀请, 在10月11号晚8:30分在其群做了一次关于BIM二次开发的讲座. 因为參与者基本上都是从设计院和施工单位来的,所以对Revit二次开发做了纵览性的解说, 以非程序猿能听懂的方式 ...