RSA介绍

根据加密原理,可以将大部分的加密算法分为两大类:对称加密算法和非对称加密算法。对称加密算法的加密和解密采用的是同一套算法规则。而非对称加密算法加密时用的是公钥(公开给所有人),解密时用的是私钥(只有相关人员拥有),

非对称加密算法中使用最广泛的就是RSA算法。RSA算法非常可靠,密钥越长,就越难破解。当今互联网中已经纰漏的破解方法是针对768位密钥。所以一般认为1024位的密钥加密是安全的,2048位是绝对安全的

RSA算法原理

RSA的算法是基于一个大因数是很难计算分解这一原理的。要想理解RSA原理需要了解一些基础的数论概念

素数

素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数

互质数

公因数只有1的两个数,叫做互质数

两个不同的质数一定是互质数。例如,2与7、13与19。一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。相邻的两个自然数是互质数。如 15与 16。相邻的两个奇数是互质数。如 49与 51。较大数是质数的两个数是互质数。如97与88。小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。2和任何奇数是互质数。例如2和87。1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。辗转相除法。

 指数运算

指数运算又称乘方计算,计算结果称为幂

模运算

模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。

RSA加密步骤

1. 随机选择两个不相等的质数p和q(这里选择了61和53。(实际应用中,这两个质数越大,就越难破解。))

2. 获取p和q的乘积n, n = 61×53 = 3233

3. 获取n的欧根函数φ(n) = (p-1)(q-1),φ(3233)等于60×52,即3120

4. 随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。则在1到3120之间,随机选择了17

5. 计算e对于φ(n)的模反元素d,ed ≡ 1 (mod φ(n)),17x+3120y=1,算出一组整数解为 (x,y)=(2753,-15),即 d=2753

6. 将n和e封装成公钥,n和d封装成私钥。在例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)

加密消息

  假设Bob想给Alice送一个消息m,他知道Alice产生的N和e。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c:

  ne ≡ c (mod N)

计算c并不复杂。Bob算出c后就可以将它传递给Alice。

解密消息

Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n:

  cd ≡ n (mod N)

得到n后,她可以将原来的信息m重新复原。

回顾上面的密钥生成步骤,一共出现了六个数字

两个质数p和q, 乘积n, n的欧根函数φ(n), 随机质数e, 和模反元素d

以上六个数字中,公开的是n和e。其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏

这样的话要想破解RSA有三个途径

1. ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。2. φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。3. n=pq。只有将n因数分解,才能算出p和q

RSA CTF一:VeryeasyRSA

已知RSA公钥生成参数:

p = 3487583947589437589237958723892346254777

q = 8767867843568934765983476584376578389

e = 65537

求d =

请提交PCTF{d}

1   按照RSA的加密流程,先算出n的值 n= p*q = 3487583947589437589237958723892346254777*8767867843568934765983476584376578389=3487583947589437589237958723892346254777*8767867843568934765983476584376578389

2  求φ(n)的值 φ(n)=(q-1)*(q-1)=(3487583947589437589237958723892346254777-1)*(8767867843568934765983476584376578389-1)=30578675145816634962204467309994126952472217172016094210686211003345383381088

3   计算d的值 根据ed ≡ 1 (mod φ(n)),转化公式65537d+30578675145816634962204467309994126952472217172016094210686211003345383381088y=1

def egcd(a, b):
if a == :
return (b, , ) else:
g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != :
raise Exception('modular inverse does not exist') else:
return x % m
#d=modinv(e,(p-)*(q-))
d = modinv(, (-)*(-))
print d

获得d的值

19178568796155560423675975774142829153827883709027717723363077606260717434369

CTF加密题型解析:RSA算法的CTF解法之一的更多相关文章

  1. 加密解密(6)RSA算法过程图解

    转自: http://blog.csdn.net/21aspnet/article/details/7249401 RSA算法 RSA公钥加密算法是1977年由Ron Rivest.Adi Shami ...

  2. springmvc使用RSA算法加密表单

    今天被吐槽在客户端用js对密码进行md5加密其实也不见得安全.这种做法其实不见得有什么作用,学过计算机网络都知道,在网上抓一个包是很简单的事,就算别人抓包抓不到你原始密码,用这个md5后的密码一样可以 ...

  3. 基于私钥加密公钥解密的RSA算法C#实现

    RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作. RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一 ...

  4. RSA算法解析

    RSA算法原理(一) 如果你问我,哪一种算法最重要? 我可能会回答"公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果 ...

  5. 浅谈IM软件业务知识——非对称加密,RSA算法,数字签名,公钥,私钥

    概述 首先了解一下相关概念:RSA算法:1977年由Ron Rivest.Adi Shamirh和LenAdleman发明的.RSA就是取自他们三个人的名字. 算法基于一个数论:将两个大素数相乘很ea ...

  6. 非对称加密RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。使用最广泛的是RSA算法

          非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey).公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密:如果用私 ...

  7. Asp.Net 常用工具类之加密——非对称加密RSA算法

    踏入程序员这个行业也有几年了,几年中有收获(技术加强),有付出(时间和亚健康状态).当然喏,并不后悔,代码路还长!!! On The Way,永不止步!!! 开发过程中也积累了一些自己的经验.代码块和 ...

  8. .NET Core 使用RSA算法 加密/解密/签名/验证签名

    前言 前不久移植了支付宝官方的SDK,以适用ASP.NET Core使用支付宝支付,但是最近有好几位用户反应在Linux下使用会出错,调试发现是RSA加密的错误,下面具体讲一讲. RSA在.NET C ...

  9. 非对称加密技术- RSA算法数学原理分析

    非对称加密技术,在现在网络中,有非常广泛应用.加密技术更是数字货币的基础. 所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密. 但是对于其原理大部分同学应 ...

随机推荐

  1. generate the call load file

    #!/usr/bin/perl -w $e911_call_percent = 0.0; $ims_node_number = 12; $local_ip = "10.86.52.2&quo ...

  2. 用Linux建立多应用系统备份服务器

    用Linux建立多应用系统备份服务器 本文旨在结合自己的工作实际,利用LinuxFTP服务器建立了一个多系统备份服务器异地备份策略. 1 建立LinuxFTP服务器 使用了Red Hat Enterp ...

  3. Python学习笔记 capture 1

    最近开始学习Python3.x,真的感觉Python的语法与C++,Java有很大的不同,Python从某些方面来说语法更简单.Python作为一种解释性语言和编译型语言如C++来说,还是各有千秋的. ...

  4. 威联通NAS 网站无法登录,可以ssh情况下重启设备方法

    步骤: 1.VPN登录NAS 2.PUTTY SSH登录设备 3.reboot设备 等待重启约5分钟.

  5. ping 原理及ICMP协议简介

    //Ping IP/域名 public static String pingIPCennect(String ipStr) {  String result = "";  if ( ...

  6. 比JLRoutes更强大更好用的iOS开源路由框架—FFRouter

    目前iOS常用路由框架是JLRouter.HHRouter.MGJRouter. 但是这些路由库都各有不足,首先是JLRouter,用不到的功能繁多,而且基于遍历查找URL,效率低下.HHRouter ...

  7. HttpClient方式调用接口的java 简单案例源码+附jar包

    1 package com.itNoob.httpClient; import org.apache.commons.httpclient.HttpClient; import org.apache. ...

  8. 【CS Round #37 (Div. 2 only) A】Boring Number

    [Link]:https://csacademy.com/contest/round-37/task/boring-number/ [Description] 让你找离平均数最近的一个数的下标; [S ...

  9. ORA-00922: 选项缺失或无效

    1.错误描写叙述 SQL> create table info_stu from select t.stu_id,t.stu_name,t.stu_age from info t; create ...

  10. .Net视图机制

    .Net会有默认的约定. HomeController下面的Index,会默认渲染Home/Index.cshtml. 当然可以设置成别的,比如设置成About. using System; usin ...