opencv图像阈值设置的三种方法
1、简单阈值设置
像素值高于阈值时,给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是 cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。 OpenCV提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:
• cv2.THRESH_BINARY
• cv2.THRESH_BINARY_INV
• cv2.THRESH_TRUNC
• cv2.THRESH_TOZERO
• cv2.THRESH_TOZERO_INV
上图摘选自《学习 OpenCV》中文版
这个函数有两个返回值,第一个为 retVal,我们后面会解释。第二个就是阈值化之后的结果图像了.
为了同时在一个窗口中显示多个图像,我们使用函数 plt.subplot(),可以通过查看 Matplotlib 的文档获得更多详细信息
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('image/lufei.jpeg',0)
ret,thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)
titles = ['Original','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img,thresh1,thresh2,thresh3,thresh4,thresh5]
for i in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
结果图:
2 、自适应阈值
在前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。但是这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。这种方法需要我们指定三个参数,返回值只有一个。
• Adaptive Method- 指定计算阈值的方法。
– cv2.ADPTIVE_THRESH_MEAN_C:阈值取自相邻区域的平均值
– cv2.ADPTIVE_THRESH_GAUSSIAN_C:阈值取值相邻区域的加权和,权重为一个高斯窗口。
• Block Size - 邻域大小(用来计算阈值的区域大小)。
• C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常数。
使用下面的代码来展示简单阈值与自适应阈值的差别:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('image/lufei.jpeg',0)
img = cv2.medianBlur(img, 5)
ret,th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
titles = ['Original','Global Thresholding(v = 127)','Adaptive Mean Thresholding','Adaptive Gaussian Thresholding']
images = [img,th1,th2,th3]
for i in xrange(4):
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
结果图:
3 、Otsu’s 二值化
在第一部分中我们提到过 retVal,当我们使用 Otsu
二值化时会用到它。那么它到底是什么呢?在使用全局阈值时,就是随便给了一个数来做阈值,那我们怎么知道选取的这个数的好坏呢?答案就是不停的尝试。如果是一幅双峰图像(双峰图像是指图像直方图中存在两个峰)我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是
Otsu 二值化要做的。简单来说就是对一幅双峰图像自动根据其直方图计算出一个阈值。(对于非双峰图像,这种方法得到的结果可能会不理想)。
这里用到到的函数还是 cv2.threshold(),但是需要多传入一个参数(flag): cv2.THRESH_OTSU。这时要把阈值设为
0。然后算法会找到最优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的retVal 值与设定的阈值相等。
下面的例子中,输入图像是一副带有噪声的图像。第一种方法,设127 为全局阈值。第二种方法,直接使用 Otsu 二值化。第三种方法,首先使用一个 5x5 的高斯核除去噪音,然后再使用 Otsu 二值化。看看噪音去除对结果的影响有多大吧。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('image/lufei.jpeg',0)
ret1,th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
ret2,th2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
blur = cv2.GaussianBlur(img, (5,5), 0)
ret3,th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
images = [img,0,th1,img,0,th2,blur,0,th3]
titles = ['Original Noisy Image','Histogram','Global Threshilding(v = 127)',
'Original Noisy Image','Histogram',"Otsu's Thresholding",
'Gaussian fifltered Image','Histogram',"Otsu's Thresholding",]
for i in xrange(3):
plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
plt.title(titles[i*3]),plt.xticks([]),plt.yticks([])
plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
plt.title(titles[i*3+1]),plt.xticks([]),plt.yticks([])
plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
plt.title(titles[i*3+2]),plt.xticks([]),plt.yticks([])
plt.show()
结果图:
4 、Otsu’s 二值化是如何工作的
在这一部分演示怎样使用 Python 来实现 Otsu 二值化算法,从而告诉大家它是如何工作的。因为是双峰图, Otsu 算法就是要找到一个阈值(t), 使得同一类加权方差最小,需要满足下列关系式:
其实就是在两个峰之间找到一个阈值 t,将这两个峰分开,并且使每一个峰内的方差最小。实现这个算法的 Python 代码如下:
import cv2
import numpy as np
img = cv2.imread('image/lufei.jpeg',0)
blur = cv2.GaussianBlur(img, (5,5), 0)
hist = cv2.calcHist([blur], [0], None, [256], [0,256])
hist_norm = hist.ravel()/hist.max()
Q = hist_norm.cumsum()
bins = np.arange(256)
fn_min = np.inf
thresh = -1
for i in xrange(1,256):
p1,p2 = np.hsplit(hist_norm, [i])
q1,q2 = Q[i],Q[255]-Q[i]
b1,b2 = np.hsplit(bins, [i])
m1,m2 = np.sum(p1*b1)/q1,np.sum(p2*b2)/q2
v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2
fn = v1*q1 + v2*q2
if fn < fn_min:
fn_min = fn
thresh = i
ret,otsu = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
print thresh,ret
opencv图像阈值设置的三种方法的更多相关文章
- opencv 3.1.0 访问像素值的三种方法(C++)
三种方法分别问: 指针访问:void colorReduce_ptr(cv::Mat &inputImage, cv::Mat &outputImage, int div); 迭代器访 ...
- Halcon一日一练:读取文件目录图像的三种方法
第一种方法: 读了一个单一图像: read_image(Image,'fabrik') 这种方式可以快速的读取软件自身携带的库图像文件,系统设定了库图像映像文件的快速读取方式,我们也可以通过绝对地址的 ...
- 【Android】Eclipse自动编译NDK/JNI的三种方法
[Android]Eclipse自动编译NDK/JNI的三种方法 SkySeraph Sep. 18th 2014 Email:skyseraph00@163.com 更多精彩请直接访问SkySer ...
- c#封装DBHelper类 c# 图片加水印 (摘)C#生成随机数的三种方法 使用LINQ、Lambda 表达式 、委托快速比较两个集合,找出需要新增、修改、删除的对象 c# 制作正方形图片 JavaScript 事件循环及异步原理(完全指北)
c#封装DBHelper类 public enum EffentNextType { /// <summary> /// 对其他语句无任何影响 /// </summary> ...
- 【Android】Eclipse自己主动编译NDK/JNI的三种方法
[Android]Eclipse自己主动编译NDK/JNI的三种方法 SkySeraph Sep. 18th 2014 Email:skyseraph00@163.com 一.Eclipse关联cy ...
- Qt 设置背景图片3种方法(三种方法:QPalette调色板,paintEvent,QSS)
方法1. setStylSheet{"QDialog{background-image:url()"}} //使用styleSheet 这种方法的好处是继承它的dialog都会自 ...
- vue自定义指令,比onerror更优雅的方式实现当图片加载失败时使用默认图,提供三种方法
首先,来看下效果图(演示一下图片正常加载与加载失败时的效果) 在线体验地址:https://hxkj.vip/demo/vueImgOnerror/ 一.常规方法解决 我们都知道,img标签支持one ...
- 像画笔一样慢慢画出Path的三种方法(补充第四种)
今天大家在群里大家非常热闹的讨论像画笔一样慢慢画出Path的这种效果该如何实现. 北京-LGL 博客号@ligl007发起了这个话题.然后各路高手踊跃发表意见.最后雷叔 上海-雷蒙 博客号@雷蒙之星 ...
- JAVA之线程同步的三种方法
最近接触到一个图片加载的项目,其中有声明到的线程池等资源需要在系统中线程共享,所以就去研究了一下线程同步的知识,总结了三种常用的线程同步的方法,特来与大家分享一下.这三种方法分别是:synchroni ...
随机推荐
- cookie知识点简点
cookie几大作用: 1.保持用户登陆状态 2.跟踪用户行为 3.制定页面 4.创建购物车 cookie缺点: 1. 可能被禁用 2.可能被删除:cookie是一个文件,easy被用户删除 3.安全 ...
- 如何扩大VMware中的ubuntu虚拟机的磁盘大小
我是在VMware中安装的ubuntu. 最近虚拟机磁盘空间不够,需要扩展,在虚拟机中设置了扩展20G,然后在ubuntu中发现扩展的20G并不能用.... 正确的扩展方法是: 1.先在虚拟机中的se ...
- git命令颜色设置
+ $ git config --global color.status auto + $ git config --global color.diff auto + $ git config --g ...
- 【总结】设备树语法及常用API函数【转】
本文转载自:http://blog.csdn.net/fengyuwuzu0519/article/details/74352188 一.DTS编写语法 二.常用函数 设备树函数思路是:uboot ...
- go语言笔记——包的概念本质上和java是一样的,通过大小写来区分private,fmt的Printf不就是嘛!
示例 4.1 hello_world.go package main import "fmt" func main() { fmt.Println("hello, wor ...
- js如何获取某id的子标签
思路:根据id获取父对象,然后使用childNodes获取所有子对象数组,关键代码: document.getElementById(div_id).childNodes; // 子对象数组 实例 ...
- 【POJ 3159】 Candies
[题目链接] 点击打开链接 [算法] 差分约束系统 [代码] #include <algorithm> #include <bitset> #include <cctyp ...
- 特征变化--->标签到索引的转换(StringIndexer)
package Spark_MLlib import org.apache.spark.ml.feature.StringIndexer import org.apache.spark.sql.Spa ...
- [Swift通天遁地]三、手势与图表-(11)制作雷达图表更加形象表示各个维度的情况
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- JS中的this是什么,this的四种用法
在Javascript中,this这个关键字可以说是用的非常多,说他简单呢也很简单,说他难呢也很难,有的人开发两三年了,自己好像也说不清this到底是什么.下面我们来看看: 1.在一般函数方法中使用 ...