虽然还是悬线法,但是这道题可不能轻易地套模板了,而是要换一种思路,横着扫一遍,竖着扫一遍,时间复杂度依旧是O(n^2),然而空间复杂度有一定的优化

如果用原来的方法,显然时间空间都会炸(如果你想用map我也没办法...时间换空间?)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define st short int
using namespace std;
inline int read(){
char chr=getchar(); int f=,ans=;
while(!isdigit(chr)) {if(chr=='-') f=-;chr=getchar();}
while(isdigit(chr)) {ans=(ans<<)+(ans<<);ans+=chr-'';chr=getchar();}
return ans*f;
}
void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%+'');
}
struct P{int x,y;}a[];
int L,W,n,x,y,ans;
bool cmp1(const P &x,const P &y){return x.x<y.x||x.x==y.x&&x.y<y.y;}
bool cmp2(const P &x,const P &y){return x.y<y.y||x.y==y.y&&x.x<y.x;}
int main(){
L=read(),W=read(),n=read();
for(int i=;i<=n;i++)x=read(),y=read(),a[i]=(P){x,y};
a[++n]=(P){,},a[++n]=(P){,W},a[++n]=(P){L,},a[++n]=(P){L,W};
sort(a+,a+n+,cmp1);
for(int i=;i<=n;i++){
int le=,ri=W,cnt=i;
while(a[i].x==a[cnt].x) cnt++;
int j=cnt;
while(j<=n){
ans=max(ans,(a[j].x-a[i].x)*(ri-le));
if(a[j].y<=a[i].y) le=max(le,a[j].y);
else ri=min(ri,a[j].y);
++j;
}le=,ri=W,j=cnt;
while(j<=n){
ans=max(ans,(a[j].x-a[i].x)*(ri-le));
if(a[j].y<a[i].y) le=max(le,a[j].y);
else ri=min(ri,a[j].y);
++j;
}
}sort(a+,a+n+,cmp2);
for(int i=;i<=n;i++){
int le=,ri=L,cnt=i;
while(a[i].y==a[cnt].y) cnt++;
int j=cnt;
while(j<=n){
ans=max(ans,(a[j].y-a[i].y)*(ri-le));
if(a[j].x<=a[i].x) le=max(le,a[j].x);
else ri=min(ri,a[j].x);
++j;
}le=,ri=L,j=cnt;
while(j<=n){
ans=max(ans,(a[j].y-a[i].y)*(ri-le));
if(a[j].x<a[i].x) le=max(le,a[j].x);
else ri=min(ri,a[j].x);
++j;
}
}cout<<ans;
return ;
}

【DP悬线法】奶牛浴场的更多相关文章

  1. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  2. P1169 [ZJOI2007]棋盘制作 DP悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  3. P4147 玉蟾宫 二维DP 悬线法

    题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子里写着'R'或者'F ...

  4. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  5. DP(悬线法)+二维前缀和【p2706】巧克力

    Background 王7的生日到了,他的弟弟准备送他巧克力. Description 有一个被分成n*m格的巧克力盒,在(i,j)的位置上有a[i,j]块巧克力.就在送出它的前一天晚上,有老鼠夜袭巧 ...

  6. DP(悬线法)【P1169】 [ZJOI2007]棋盘制作

    顾z 你没有发现两个字里的blog都不一样嘛 qwq 题目描述-->p1169 棋盘制作 题目大意 给定一个01棋盘,求其中01交错的最大正方形与矩形. 解题思路: 动态规划---悬线法 以下内 ...

  7. 算法浅谈之DP悬线法

    悬线法 用途 解决给定矩阵中满足条件的最大子矩阵 做法 用一条线(横竖貌似都行)左右移动直到不满足约束条件或者到达边界 定义 \(left[i][j]\):代表从\((i,j)\)能到达的最左位置 \ ...

  8. [DP专题]悬线法

    参考:https://blog.csdn.net/twtsa/article/details/8120269 先给出题目来源:(洛谷) 1.p1387 最大正方形 2.P1169 棋盘制作 3.p27 ...

  9. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

随机推荐

  1. Math.floor() 与 parseInt()

    parseInt()与Math.floor()都能实现数字的向下取整,但是两者存在根本上的差异,1.Math.floor()用于一个数的向下取整,不能解析字符串 <script type=&qu ...

  2. netperf使用指南

    1. 介绍: Netperf是由惠普公司开发的,测试网络栈.即测试不同类型的网络性能的benchmark工具,大多数网络类型TCP/UPD端对端的性能,得到网络上不同类型流量的性能参数.Netperf ...

  3. php第十二节课

    练习 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.o ...

  4. uva 1583 Digit Generator(Uva-1583)

    题目不再写入了,vj:https://vjudge.net/problem/UVA-1583#author=0 主要讲的是找一个数的小于它的一个数,小于它的那个数每一位加起来再加上那个数就会等于原来的 ...

  5. centos中安装tomcat

    1.先保证centos中安装了jre的环境. 2.上传tomcat的压缩包到root根目录. 3.切换到根目录 输入命令cd ~ , 然后 ll , 查看上传情况: 4.选中复制压缩文件,输入解压命令 ...

  6. MySql 日志查看与设置

    错误日志log-errol 开启方式:在my.ini的[mysqld]选项下:添加代码:log-error=E:\log-error.txt 记录内容:主要是记录启动.运行或停止mysqld时出现的致 ...

  7. 手写DAO框架(二)-开发前的最后准备

    -------前篇:手写DAO框架(一)-从“1”开始 --------- 前言:前篇主要介绍了写此框架的动机,把主要功能点大致介绍了一下.此篇文章主要介绍开发前最后的一些准备.主要包括一些基础知识点 ...

  8. 4、ceph-deploy之配置使用对象存储

    从firefly(v0.80)版本开始,ceph存储显著的简化了安装和配置Ceph Object Gateway, Gateway进程嵌入到Civetweb,所以你需要安装一个web服务,或者配置Fa ...

  9. 允许MS SqlServer远程连接

    实际问题: 服务器192.168.0.103上的SQL Express数据库实例,局域网内其余机器的Sql Server Management Studio都无法连接. 在本机上,可以用“.\SqlE ...

  10. 火星人 2004年NOIP全国联赛普及组

    题目描述 Description 人类终于登上了火星的土地并且见到了神秘的火星人.人类和火星人都无法理解对方的语言,但是我们的科学家发明了一种用数字交流的方法.这种交流方法是这样的,首先,火星人把一个 ...