一开始看到题目感觉很难

然后看到题解感觉这题贼简单,我好像想复杂了

就算出每一行最少的资源(完全背包+二分)然后就枚举就好了。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 212345;
const int MAXM = 112;
int n, m, k;
int w[MAXM], p[MAXM], q[MAXN];
int f[MAXN], list[MAXN]; int main()
{
scanf("%d%d%d", &m, &n, &k);
REP(i, 0, m) scanf("%d", &w[i]);
REP(i, 0, m) scanf("%d", &p[i]);
REP(i, 0, n) scanf("%d", &q[i]); REP(i, 0, m)
REP(j, w[i], k + 1)
f[j] = max(f[j], f[j-w[i]]+p[i]); int head = 0, sum = 0, ans = 0;
REP(i, 0, n)
{
int t = lower_bound(f, f + k + 1, q[i]) - f;//不是二分答案都用stl二分,简单又不会错
sum += t; list[i] = t;
while(sum > k) sum -= list[head++]; //注意这里是while
ans = max(ans, i - head + 1);
}
printf("%d\n", ans); return 0;
}

caioj 1086 动态规划入门(非常规DP10:进攻策略)的更多相关文章

  1. caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)

    我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...

  2. caioj 1087 动态规划入门(非常规DP11:潜水员)(二维背包)

    这道题的难点在于价值可以多. 这道题我一开始用的是前面的状态推现在的状态 实现比较麻烦,因为价值可以多,所以就设最大价值 为题目给的最大价值乘以10 #include<cstdio> #i ...

  3. 洛谷P1280 && caioj 1085 动态规划入门(非常规DP9:尼克的任务)

    这道题我一直按照往常的思路想 f[i]为前i个任务的最大空暇时间 然后想不出来怎么做-- 后来看了题解 发现这里设的状态是时间,不是任务 自己思维还是太局限了,题做得太少. 很多网上题解都反着做,那么 ...

  4. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

  5. caioj 1083 动态规划入门(非常规DP7:零件分组)(LIS)

    这道题题目给的顺序不是固定的 所以一开始要自己排序,按照w来排序 后来只要看l就可以了 然后求最长下降子序列即可(根据那个神奇的定理,LIS模板里有提到) #include<cstdio> ...

  6. caioj 1082 动态规划入门(非常规DP6:火车票)

    f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #i ...

  7. caioj 1081 动态规划入门(非常规DP5:观光游览)

    这道题和前面的分组的题有点像 就是枚举最后一组的长度. 然后组数可以在第一层循环也可以在第二层循环 我自己的话就统一一下在第一层循环吧 然后这道题题意我一直没理解清楚,浪费了很多时间,写复杂了 同时初 ...

  8. caioj 1079 动态规划入门(非常规DP3:钓鱼)(动规中的坑)

    这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> ...

  9. caioj 1078 动态规划入门(非常规DP2:不重叠线段)(状态定义问题)

    我一开始想的是前i个区间的最大值 显然对于当前的区间,有不选和选两种情况 如果不选的话,就继承f[i-1] 如果选的话,找离当前区间最近的区间取最优 f[i] = max(f[i-1, f[j] + ...

随机推荐

  1. Tomcat学习(一)——使用Eclipse绑定Tomcat并发布应用

    1.下载Tomcat 官网地址:http://tomcat.apache.org/whichversion.html 2.目录结构 bin:脚本目录 启动脚本:startup.bat 停止脚本:shu ...

  2. HDU 1241 Oil Deposits【DFS】

    解题思路:第一道DFS的题目--- 参看了紫书和网上的题解-- 在找到一块油田@的时候,往它的八个方向找,直到在能找到的范围内没有油田结束这次搜索 可以模拟一次DFS,比如说样例 在i=0,j=1时, ...

  3. IIS支持10万个同时请求的设置

    1. 调整IIS 7应用程序池队列长度 由原来的默认1000改为65535. IIS Manager > ApplicationPools > Advanced Settings Queu ...

  4. oralce模糊查询之含有通配符

    oracle中通配符有 '_'和'%'当like  '_ww%'时,会把'_'和'%'当作通配符使用导致查不出含有'_'和'%'的数据.这时用到转译字符 like '\_ww\%' escape '\ ...

  5. UE4.18.3 C++项目无法打开C++类问题(VS2017)

    升级VS2017后,突然出现UE4创建C++项目无法打开VS问题.经过测试为VS2017升级后C++的桌面开发工具集采用了VC++2017 v141工具集,而UE4对该工具集尚未兼容,故找不到vs打开 ...

  6. Linux 文件系统的层次化结构

    FHS,Filesystem Hierarchy Standard,文件系统层次化标准.这是一个推荐标准,可以从 http://www.pathname.com/fhs/ 获取. 本文不讨论 FHS, ...

  7. Python学习笔记(二):字符串类型

    在上一篇随笔(https://www.cnblogs.com/g-qiang/p/10448813.html)中,说到 Python 有六种标准数据类型,而数字类型和字符串类型又是其中基本的数据类型. ...

  8. WPF 列表自动换行

    原文:WPF 列表自动换行 本文告诉大家如何在 ListView 或 ListBox 使用 WrapPanel 让里面的控件自动换行 在 WPF 可以通过修改 ItemsPanel 设置使用不同的 I ...

  9. numpy学习笔记 - numpy常用函数、向量化操作及基本数学统计方法

    # -*- coding: utf-8 -*-"""主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新.Created on Fri Aug 24 19 ...

  10. GenIcam标准(三)

    2.6. 缓存 如果某个实现对每个写操作支持范围.实现和可用状态的检查,通常会触发一系列对相机的读操作.大多数用于有效性检查的数值很少或不会发生变化,所以可以放入缓存.相机描述文件包含所有必需的定义以 ...