【比赛】NOIP2017 小凯的疑惑
找规律:ans=a*b-a-b
证明:(可见 体系知识)
gcd(A, B) = 1 → lcm(A, B) = AB
剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成
任何数分成m个剩余类,分别为 mk,mk+1,mk+2,……,mk+(m-1)
分别记为{0(mod m)},{1(mod m)}……
而n的倍数肯定分布在这m个剩余类中
因为gcd(m,n)=1,所以每个剩余类中都有一些数是$n$的倍数,并且是平均分配
设 kmin = min { k | nk ∈ {i (mod m) } }, i ∈ [0, m)
则 nkmin 是{i (mod m)}中n的最小倍数。特别的,nm ∈ {0 (mod m)}
nkmin 是个标志,它表明{i (mod m)}中nkmin 后面所有数,即nkmin + jm必定都能被组合出来
那也说明最大不能组合数必定小于nkmin
我们开始寻找max{ nkmin }
lcm(m, n) = mn,所以很明显(m-1)n是最大的
因为(m-1)n是nkmin 中的最大值,所以在剩下的m-1个剩余类中,必定有比它小并且能被m和n组合,这些数就是(m-1)n -1,(m-1)n -2,……,(m-1)n -(m-1)
所以最大不能被组合数就是(m-1)n -m=m*n-m-n
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll a,b;
int main()
{
freopen("math.in","r",stdin);
freopen("math.out","w",stdout);
scanf("%lld%lld",&a,&b);
printf("%lld\n",a*b-a-b);
return ;
}
NOIP2017 小凯的疑惑
【比赛】NOIP2017 小凯的疑惑的更多相关文章
- 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...
- NOIP2017 小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- 题解【洛谷P3951】[NOIP2017]小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- luogu2951 noip2017 小凯的疑惑
在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...
- luogu 3951 小凯的疑惑
noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...
- Luogu [P3951] 小凯的疑惑
题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...
- NOIP 2017 小凯的疑惑
# NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...
- 2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...
随机推荐
- jmeter☞工作区介绍(三)
基于jmeter4.0,jdk1.8 目录树:存放设计过程中使用的元件.执行过程中默认是从根节点开始顺序遍历元件.比如说HTTP请求的取样器就是元件,组件就是一个或多个元件的集合. 测试计划编辑区域: ...
- Navicat连接mysql报错1251
Navicat无法连接MySQL8,是因为MySQL8的方式和MySQL5的加密方式不一样导致 解决方案: 1.通过命令行进入mysql数据库: C:\Windows\system32> mys ...
- Python 3 利用 Dlib 19.7 进行人脸检测
0. 引言 / Overview 介绍 Dlib 中基于 HOG,Histogram of Oriented Gradients / 方向梯度直方图 实现 Face Detect / 人脸检测 的两个 ...
- golang应用打包成docker镜像
golang编译的应用是不需要依赖其他运行环境的,那么为什么还需要打包成docker镜像呢?当需要附带配置和日志等文件时可以更方便的移植和运行,下面介绍从dockerfile编译成镜像. 在项目根目录 ...
- Oracle之带参存储过程(存储过程中for循环调用存储过程)
--带参存储过程create or replace procedure testdate(v in number) is i number; begin i:=v; insert into test_ ...
- 分布式消息队列RocketMQ与Kafka架构上的巨大差异
分布式消息服务 Kafka 是一个高吞吐.高可用的消息中间件服务,适用于构建实时数据管道.流式数据处理.第三方解耦.流量削峰去谷等场景,具有大规模.高可靠.高并发访问.可扩展且完全托管的特点,是分布式 ...
- cal命令详解
基础命令学习目录首页 原文链接:https://www.yiibai.com/linux/cal.html cal命令可以用来显示公历(阳历)日历.公历是现在国际通用的历法,又称格列历,通称阳历.“阳 ...
- 随手记录-linux-vim使用
- Teamproject --人员职责
职责分配: 初步分工如下: PM:林豪森 Dev:宋天舒 张迎春 黄漠源 刘翔宇 叶露婷 旦增晋美 黄敬博 Test:林豪森 宋天舒 张迎春 刘翔宇 经过团队的讨论,认为对于职责的分配,并不存在绝对的 ...
- 20135313-exp1
北京电子科技学院(BESTI) 实 验 报 告 课程:Java程序设计 班级:1353 姓名:吴子怡 学号:20135313 成绩: 指导教师:娄嘉鹏 实 ...