Computer Vision Resources

Softwares

Topic

Resources

References

Feature Extraction

  1. D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]
  2. Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]
  3. J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparisonSIAM Journal on Imaging Sciences, 2009. [PDF]
  4. H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006. [PDF]
  5. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectors. IJCV, 2005. [PDF]
  6. J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002. [PDF]
  7. A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]
  8. E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]
  9. T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010. [PDF]
  10. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005. [PDF]
  11. A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001. [PDF]
  12. S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002. [PDF]
  13. K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene RecognitionPAMI, 2010.
  14. I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]
  15. J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011. [PDF]

Image Segmentation

  1. J. Shi and J Malik, Normalized Cuts and Image Segmentation, PAMI, 2000 [PDF]
  2. X. Ren and J. Malik. Learning a classification model for segmentation. ICCV, 2003. [PDF]
  3. P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004. [PDF]
  4. D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002. [PDF]
  5. P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011. [PDF]
  6. A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric Flows, PAMI 2009. [PDF]
  7. A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking, ECCV, 2008. [PDF]
  8. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]
  9. A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007. [PDF]
  10. S. Maji, N. Vishnoi and J. Malik, Biased Normalized Cut, CVPR 2011
  11. E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,”  ACCV 2009. [PDF]
  12. N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]

Object Detection

  • A simple object detector with boosting [Project]

  • INRIA Object Detection and Localization Toolkit [1] [Project]

  • Discriminatively Trained Deformable Part Models [2] [Project]

  • Cascade Object Detection with Deformable Part Models [3] [Project]

  • Poselet [4] [Project]

  • Implicit Shape Model [5] [Project]

  • Viola and Jones's Face Detection [6] [Project]
  1. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005. [PDF]
  2. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
    Object Detection with Discriminatively Trained Part Based Models, PAMI, 2010 [PDF]
  3. P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part Models. CVPR 2010 [PDF]
  4. L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV 2009 [PDF]
  5. B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, 2008. [PDF]
  6. P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR 2001. [PDF]

Saliency Detection

  • Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

  • Frequency-tuned salient region detection [2] [Project]

  • Saliency detection using maximum symmetric surround [3] [Project]

  • Attention via Information Maximization [4] [Matlab code]

  • Context-aware saliency detection [5] [Matlab code]

  • Graph-based visual saliency [6] [Matlab code]

  • Saliency detection: A spectral residual approach. [7] [Matlab code]

  • Segmenting salient objects from images and videos. [8] [Matlab code]

  • Saliency Using Natural statistics. [9] [Matlab code]

  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

  • Learning to Predict Where Humans Look [11] [Project]

  1. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998. [PDF]
  2. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]
  3. R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]
  4. N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005. [PDF]
  5. S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. [PDF]
  6. J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]
  7. X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007. [PDF]
  8. E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010. [PDF]
  9. L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008. [PDF]
  10. D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004. [PDF]
  11. T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009. [PDF]

Image Classification

  1. K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005. [PDF]
  2. S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesCVPR 2006 [PDF]
  3. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification, CVPR, 2010 [PDF]
  4. J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR, 2009 [PDF]
  5. M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]
  6. A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object Detection. ICCV, 2009. [PDF]
  7. P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]
  8. J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
    Parsing with Superpixels
    , ECCV 2010. [PDF]

Category-Independent Object Proposal

  • Objectness measure [1] [Code]

  • Parametric min-cut [2] [Project]

  • Object proposal [3] [Project]

  1. B. Alexe, T. Deselaers, V. Ferrari, What is an Object?, CVPR 2010 [PDF]
  2. J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation, CVPR 2010. [PDF]
  3. I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]

MRF

  1. Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]

Shadow Detection

  • Shadow Detection using Paired Region [Project]

  • Ground shadow detection [Project]

  1. R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]
  2. J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer Photographs, ECCV 2010 [PDF]

Optical Flow

  1. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI 1981. [PDF]
  2. J. Shi, C. Tomasi, Good Feature to Track, CVPR 1994. [PDF]
  3. C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral Thesis. MIT 2009. [PDF]
  4. B.K.P. Horn and B.G. Schunck, Determining Optical FlowArtificial Intelligence 1981. [PDF]
  5. M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]
  6. D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principles, CVPR 2010. [PDF]
  7. T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI, 2010 [PDF]
  8. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, ECCV 2004 [PDF]

Object Tracking

  • Particle filter object tracking [1] [Project]

  • KLT Tracker [2-3] [Project]

  • MILTrack [4] [Code]

  • Incremental Learning for Robust Visual Tracking [5] [Project]

  • Online Boosting Trackers [6-7] [Project]

  • L1 Tracking [8] [Matlab code]

  1. P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]
  2. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI 1981. [PDF]
  3. J. Shi, C. Tomasi, Good Feature to Track, CVPR 1994. [PDF]
  4. B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance Learning, PAMI 2011 [PDF]
  5. D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007 [PDF]
  6. H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
  7. H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust Tracking, ECCV 2008 [PDF]
  8. X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]

Image Matting

  • Closed Form Matting [Code]

  • Spectral Matting [Project]

  • Learning-based Matting [Code]

  1. A. Levin D. Lischinski and Y. WeissA Closed Form Solution to Natural Image Matting, PAMI 2008 [PDF]
  2. A. Levin, A. Rav-Acha, D. Lischinski. Spectral MattingPAMI 2008. [PDF]
  3. Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009 [PDF]

Bilateral Filtering

  • Fast Bilateral Filter [Project]

  • Real-time O(1) Bilateral Filtering [Code]

  • SVM for Edge-Preserving Filtering [Code]

  1. Q. Yang, K.-H. Tan and N. Ahuja,  Real-time O(1) Bilateral Filtering
    CVPR 2009. [PDF]
  2. Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering
    CVPR 2010. [PDF]

Image Denoising

 

Image Super-Resolution

  • MRF for image super-resolution [Project]

  • Multi-frame image super-resolution [Project]

  • UCSC Super-resolution [Project]

  • Sprarse coding super-resolution [Code]

 

Image Deblurring

  • Eficient Marginal Likelihood Optimization in Blind Deconvolution [Code]

  • Analyzing spatially varying blur [Project]

  • Radon Transform [Code]

 

Image Quality Assessment

  1. L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality Assessment, TIP 2011. [PDF]
  2. N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, Image Quality Assessment Based on a Degradation Model, TIP 2000. [PDF]
  3. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]
  4. B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA), ICIP 2008. [PDF]

Density Estimation

  • Kernel Density Estimation Toolbox [Project]
 

Dimension Reduction

 

Sparse Coding

   

Low-Rank Matrix Completion

   

Nearest Neighbors matching

 

Steoreo

  1. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2002 [PDF]

Structure from motion

  1. N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH, 2006. [PDF]

Distance Transformation

  • Distance Transforms of Sampled Functions [1] [Project]
  1. P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Technical report, Cornell University, 2004. [PDF]

Clustering

 

Classification

 

Regression

  • SVM

  • RVM

  • GPR

 

Multiple Kernel Learning (MKL)

  1. S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learning. JMLR, 2006. [PDF]
  2. F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]
  3. F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learning. CVPR, 2010. [PDF]
  4. A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMRL, 2008. [PDF]

Multiple Instance Learning (MIL)

   

Other Utilities

  • Code for downloading Flickr images, by James Hays [Code]

  • The Lightspeed Matlab Toolbox by Tom Minka [Code]

  • MATLAB Functions for Multiple View Geometry [Code]

  • Peter's Functions for Computer Vision [Code]

  • Statistical Pattern Recognition Toolbox [Code]
 

Useful Links (dataset, lectures, and other softwares)

Conference Information

Papers

Datasets

Lectures

Source Codes

Computer Vision Resources的更多相关文章

  1. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  2. code and dataset resources of computer vision

    From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustiv ...

  3. Computer vision labs

    积累记录一些视觉实验室,方便查找 1.  多伦多大学计算机科学系 2.  普林斯顿大学计算机视觉和机器人实验室 3.  牛津大学Torr Vision Group 4.  伯克利视觉和学习中心 Pro ...

  4. Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg

    In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a ...

  5. [转载]Three Trending Computer Vision Research Areas, 从CVPR看接下来几年的CV的发展趋势

    As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer V ...

  6. (转) WTF is computer vision?

        WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor   Next Story   Someon ...

  7. Computer Vision 学习 -- 图像存储格式

    本文把自己理解的图像存储格式总结一下. 计算机中的数据,都是二进制的,所以图片也不例外. 这是opencv文档的描述,具体在代码里面,使用矩阵来进行存储. 类似下图是(BGR格式): 图片的最小单位是 ...

  8. Analyzing The Papers Behind Facebook's Computer Vision Approach

    Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...

  9. 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.

    The picture above is funny. But for me it is also one of those examples that make me sad about the o ...

随机推荐

  1. js小功能记录

    个人日常中遇到的js小功能记录,方便查看. /** * 判断是否包含字符串某字符串 * @param {[type]} str [被检测的字符串] * @param {[type]} substr [ ...

  2. JAVA Junit4

                                   JAVA     Junit4   测试框架 序言 刚学Java的时候就听说过JUnit了,单元测试框架,很好用的测试框架,JUnit测试 ...

  3. Python实现奖金计算两种方法的比较

    应发奖金计算 简述:企业发放的奖金根据利润提成.利润(profit)低于或等于10万元时,奖金可提10%: 利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成 ...

  4. P4254 [JSOI2008]Blue Mary开公司

    题面 这道题的意思就是给出若干个一次函数,当\(x=x_0\)时,最大的\(y\)为多少 这种题可以用李超线段树来处理 什么是李超线段树呢? 李超线段树存储的是在区间上方暴露最多的直线标号,为了便于描 ...

  5. 01 Spring Boot 的简单配置和使用

    Spring Boot 简介 使用 Spring Boot 可以让我们快速创建一个基于 Spring 的项目,而让这个 Spring 项目跑起来我们只需要很少的配置就可以了. 创建 Spring Bo ...

  6. BZOJ 50题纪念?

    是的,这次的纪念帖也比较磕碜-- 但是还有更磕碜的↓↓↓ 2017年6月7日,我在我的旧博客发了个bzoj10题纪念-- 那时我还是一个又young又simple的菜鸡(现在可能也是--),省选之后觉 ...

  7. BZOJ 3524 Couriers | 主席树

    BZOJ 3524 Couriers 题意 求一个区间内出现超过区间长度的一半的数,如果没有则输出0. 题解 我可能太菜了吧--这道题愣是没想出来-- 维护权值主席树,记录每个数都出现过多少次: 查询 ...

  8. Codeforces 901C. Bipartite Segments(思维题)

    擦..没看见简单环..已经想的七七八八了,就差一步 显然我们只要知道一个点最远可以向后扩展到第几个点是二分图,我们就可以很容易地回答每一个询问了,但是怎么求出这个呢. 没有偶数简单环,相当于只有奇数简 ...

  9. NTT+多项式求逆

    #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #i ...

  10. NIN (Network In Network)

    Network In Network 论文Network In Network(Min Lin, ICLR2014). 传统CNN使用的线性滤波器是一种广义线性模型(Generalized linea ...