sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

数据统计分析项目联系QQ:231469242

http://fa.bianp.net/blog/2013/logistic-ordinal-regression/

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 24 09:21:01 2017 @author: toby
""" # Import standard packages
import numpy as np # additional packages
from sklearn import metrics
from scipy import linalg, optimize, sparse
import warnings BIG = 1e10
SMALL = 1e-12 def phi(t):
''' logistic function, returns 1 / (1 + exp(-t)) ''' idx = t > 0
out = np.empty(t.size, dtype=np.float)
out[idx] = 1. / (1 + np.exp(-t[idx]))
exp_t = np.exp(t[~idx])
out[~idx] = exp_t / (1. + exp_t)
return out def log_logistic(t):
''' (minus) logistic loss function, returns log(1 / (1 + exp(-t))) ''' idx = t > 0
out = np.zeros_like(t)
out[idx] = np.log(1 + np.exp(-t[idx]))
out[~idx] = (-t[~idx] + np.log(1 + np.exp(t[~idx])))
return out def ordinal_logistic_fit(X, y, alpha=0, l1_ratio=0, n_class=None, max_iter=10000,
verbose=False, solver='TNC', w0=None):
'''
Ordinal logistic regression or proportional odds model.
Uses scipy's optimize.fmin_slsqp solver. Parameters
----------
X : {array, sparse matrix}, shape (n_samples, n_feaures)
Input data
y : array-like
Target values
max_iter : int
Maximum number of iterations
verbose: bool
Print convergence information Returns
-------
w : array, shape (n_features,)
coefficients of the linear model
theta : array, shape (k,), where k is the different values of y
vector of thresholds
''' X = np.asarray(X)
y = np.asarray(y)
w0 = None if not X.shape[0] == y.shape[0]:
raise ValueError('Wrong shape for X and y') # .. order input ..
idx = np.argsort(y)
idx_inv = np.zeros_like(idx)
idx_inv[idx] = np.arange(idx.size)
X = X[idx]
y = y[idx].astype(np.int)
# make them continuous and start at zero
unique_y = np.unique(y)
for i, u in enumerate(unique_y):
y[y == u] = i
unique_y = np.unique(y) # .. utility arrays used in f_grad ..
alpha = 0.
k1 = np.sum(y == unique_y[0])
E0 = (y[:, np.newaxis] == np.unique(y)).astype(np.int)
E1 = np.roll(E0, -1, axis=-1)
E1[:, -1] = 0.
E0, E1 = map(sparse.csr_matrix, (E0.T, E1.T)) def f_obj(x0, X, y):
"""
Objective function
"""
w, theta_0 = np.split(x0, [X.shape[1]])
theta_1 = np.roll(theta_0, 1)
t0 = theta_0[y]
z = np.diff(theta_0) Xw = X.dot(w)
a = t0 - Xw
b = t0[k1:] - X[k1:].dot(w)
c = (theta_1 - theta_0)[y][k1:] if np.any(c > 0):
return BIG #loss = -(c[idx] + np.log(np.exp(-c[idx]) - 1)).sum()
loss = -np.log(1 - np.exp(c)).sum() loss += b.sum() + log_logistic(b).sum() \
+ log_logistic(a).sum() \
+ .5 * alpha * w.dot(w) - np.log(z).sum() # penalty
if np.isnan(loss):
pass
#import ipdb; ipdb.set_trace()
return loss def f_grad(x0, X, y):
"""
Gradient of the objective function
"""
w, theta_0 = np.split(x0, [X.shape[1]])
theta_1 = np.roll(theta_0, 1)
t0 = theta_0[y]
t1 = theta_1[y]
z = np.diff(theta_0) Xw = X.dot(w)
a = t0 - Xw
b = t0[k1:] - X[k1:].dot(w)
c = (theta_1 - theta_0)[y][k1:] # gradient for w
phi_a = phi(a)
phi_b = phi(b)
grad_w = -X[k1:].T.dot(phi_b) + X.T.dot(1 - phi_a) + alpha * w # gradient for theta
idx = c > 0
tmp = np.empty_like(c)
tmp[idx] = 1. / (np.exp(-c[idx]) - 1)
tmp[~idx] = np.exp(c[~idx]) / (1 - np.exp(c[~idx])) # should not need
grad_theta = (E1 - E0)[:, k1:].dot(tmp) \
+ E0[:, k1:].dot(phi_b) - E0.dot(1 - phi_a) grad_theta[:-1] += 1. / np.diff(theta_0)
grad_theta[1:] -= 1. / np.diff(theta_0)
out = np.concatenate((grad_w, grad_theta))
return out def f_hess(x0, s, X, y):
x0 = np.asarray(x0)
w, theta_0 = np.split(x0, [X.shape[1]])
theta_1 = np.roll(theta_0, 1)
t0 = theta_0[y]
t1 = theta_1[y]
z = np.diff(theta_0) Xw = X.dot(w)
a = t0 - Xw
b = t0[k1:] - X[k1:].dot(w)
c = (theta_1 - theta_0)[y][k1:] D = np.diag(phi(a) * (1 - phi(a)))
D_= np.diag(phi(b) * (1 - phi(b)))
D1 = np.diag(np.exp(-c) / (np.exp(-c) - 1) ** 2)
Ex = (E1 - E0)[:, k1:].toarray()
Ex0 = E0.toarray()
H_A = X[k1:].T.dot(D_).dot(X[k1:]) + X.T.dot(D).dot(X)
H_C = - X[k1:].T.dot(D_).dot(E0[:, k1:].T.toarray()) \
- X.T.dot(D).dot(E0.T.toarray())
H_B = Ex.dot(D1).dot(Ex.T) + Ex0[:, k1:].dot(D_).dot(Ex0[:, k1:].T) \
- Ex0.dot(D).dot(Ex0.T) p_w = H_A.shape[0]
tmp0 = H_A.dot(s[:p_w]) + H_C.dot(s[p_w:])
tmp1 = H_C.T.dot(s[:p_w]) + H_B.dot(s[p_w:])
return np.concatenate((tmp0, tmp1)) import ipdb; ipdb.set_trace()
import pylab as pl
pl.matshow(H_B)
pl.colorbar()
pl.title('True')
import numdifftools as nd
Hess = nd.Hessian(lambda x: f_obj(x, X, y))
H = Hess(x0)
pl.matshow(H[H_A.shape[0]:, H_A.shape[0]:])
#pl.matshow()
pl.title('estimated')
pl.colorbar()
pl.show() def grad_hess(x0, X, y):
grad = f_grad(x0, X, y)
hess = lambda x: f_hess(x0, x, X, y)
return grad, hess x0 = np.random.randn(X.shape[1] + unique_y.size) / X.shape[1]
if w0 is not None:
x0[:X.shape[1]] = w0
else:
x0[:X.shape[1]] = 0.
x0[X.shape[1]:] = np.sort(unique_y.size * np.random.rand(unique_y.size)) #print('Check grad: %s' % optimize.check_grad(f_obj, f_grad, x0, X, y))
#print(optimize.approx_fprime(x0, f_obj, 1e-6, X, y))
#print(f_grad(x0, X, y))
#print(optimize.approx_fprime(x0, f_obj, 1e-6, X, y) - f_grad(x0, X, y))
#import ipdb; ipdb.set_trace() def callback(x0):
x0 = np.asarray(x0)
# print('Check grad: %s' % optimize.check_grad(f_obj, f_grad, x0, X, y))
if verbose:
# check that gradient is correctly computed
print('OBJ: %s' % f_obj(x0, X, y)) if solver == 'TRON':
import pytron
out = pytron.minimize(f_obj, grad_hess, x0, args=(X, y))
else:
options = {'maxiter' : max_iter, 'disp': 0, 'maxfun':10000}
out = optimize.minimize(f_obj, x0, args=(X, y), method=solver,
jac=f_grad, hessp=f_hess, options=options, callback=callback) if not out.success:
warnings.warn(out.message)
w, theta = np.split(out.x, [X.shape[1]])
return w, theta def ordinal_logistic_predict(w, theta, X):
"""
Parameters
----------
w : coefficients obtained by ordinal_logistic
theta : thresholds
"""
unique_theta = np.sort(np.unique(theta))
out = X.dot(w)
unique_theta[-1] = np.inf # p(y <= max_level) = 1
tmp = out[:, None].repeat(unique_theta.size, axis=1)
return np.argmax(tmp < unique_theta, axis=1) def main():
DOC = """
================================================================================
Compare the prediction accuracy of different models on the boston dataset
================================================================================
"""
print(DOC)
from sklearn import cross_validation, datasets
boston = datasets.load_boston()
X, y = boston.data, np.round(boston.target)
#X -= X.mean()
y -= y.min() idx = np.argsort(y)
X = X[idx]
y = y[idx]
cv = cross_validation.ShuffleSplit(y.size, n_iter=50, test_size=.1, random_state=0)
score_logistic = []
score_ordinal_logistic = []
score_ridge = []
for i, (train, test) in enumerate(cv):
#test = train
if not np.all(np.unique(y[train]) == np.unique(y)):
# we need the train set to have all different classes
continue
assert np.all(np.unique(y[train]) == np.unique(y))
train = np.sort(train)
test = np.sort(test)
w, theta = ordinal_logistic_fit(X[train], y[train], verbose=True,
solver='TNC')
pred = ordinal_logistic_predict(w, theta, X[test])
s = metrics.mean_absolute_error(y[test], pred)
print('ERROR (ORDINAL) fold %s: %s' % (i+1, s))
score_ordinal_logistic.append(s) from sklearn import linear_model
clf = linear_model.LogisticRegression(C=1.)
clf.fit(X[train], y[train])
pred = clf.predict(X[test])
s = metrics.mean_absolute_error(y[test], pred)
print('ERROR (LOGISTIC) fold %s: %s' % (i+1, s))
score_logistic.append(s) from sklearn import linear_model
clf = linear_model.Ridge(alpha=1.)
clf.fit(X[train], y[train])
pred = np.round(clf.predict(X[test]))
s = metrics.mean_absolute_error(y[test], pred)
print('ERROR (RIDGE) fold %s: %s' % (i+1, s))
score_ridge.append(s) print()
print('MEAN ABSOLUTE ERROR (ORDINAL LOGISTIC): %s' % np.mean(score_ordinal_logistic))
print('MEAN ABSOLUTE ERROR (LOGISTIC REGRESSION): %s' % np.mean(score_logistic))
print('MEAN ABSOLUTE ERROR (RIDGE REGRESSION): %s' % np.mean(score_ridge))
# print('Chance level is at %s' % (1. / np.unique(y).size)) return np.mean(score_ridge) if __name__ == '__main__':
out = main()
print(out)

TL;DR: I've implemented a logistic ordinal regression or proportional odds model. Here is the Python code

The logistic ordinal regression model, also known as the proportional odds was introduced in the early 80s by McCullagh [12] and is a generalized linear model specially tailored for the case of predicting ordinal variables, that is, variables that are discrete (as in classification) but which can be ordered (as in regression). It can be seen as an extension of the logistic regression model to the ordinal setting.

Given X∈Rn×pX∈Rn×p input data and y∈Nny∈Nn target values. For simplicity we assume yy is a non-decreasing vector, that is, y1≤y2≤...y1≤y2≤.... Just as the logistic regression models posterior probability P(y=j|Xi)P(y=j|Xi) as the logistic function, in the logistic ordinal regression we model thecummulative probability as the logistic function. That is,

P(y≤j|Xi)=ϕ(θj−wTXi)=11+exp(wTXi−θj)P(y≤j|Xi)=ϕ(θj−wTXi)=11+exp⁡(wTXi−θj)

where w,θw,θ are vectors to be estimated from the data and ϕϕ is the logistic function defined as ϕ(t)=1/(1+exp(−t))ϕ(t)=1/(1+exp⁡(−t)).

 Toy example with three classes denoted in different colors. Also shown the vector of coefficients ww and the thresholds θ0θ0 and θ1θ1

Compared to multiclass logistic regression, we have added the constrain that the hyperplanes that separate the different classes are parallel for all classes, that is, the vector ww is common across classes. To decide to which class will XiXi be predicted we make use of the vector of thresholds θθ. If there are KK different classes, θθ is a non-decreasing vector (that is, θ1≤θ2≤...≤θK−1θ1≤θ2≤...≤θK−1) of size K−1K−1. We will then assign the class jj if the prediction wTXwTX (recall that it's a linear model) lies in the interval [θj−1,θj[[θj−1,θj[. In order to keep the same definition for extremal classes, we define θ0=−∞θ0=−∞ and θK=+∞θK=+∞.

The intuition is that we are seeking a vector ww such that XwXw produces a set of values that are well separated into the different classes by the different thresholds θθ. We choose a logistic function to model the probability P(y≤j|Xi)P(y≤j|Xi) but other choices are possible. In the proportional hazards model 1 the probability is modeled as −log(1−P(y≤j|Xi))=exp(θj−wTXi)−log⁡(1−P(y≤j|Xi))=exp⁡(θj−wTXi). Other link functions are possible, where the link function satisfies link(P(y≤j|Xi))=θj−wTXilink(P(y≤j|Xi))=θj−wTXi. Under this framework, the logistic ordinal regression model has a logistic link function and the proportional hazards model has a log-log link function.

The logistic ordinal regression model is also known as the proportional odds model, because the ratio of corresponding odds for two different samples X1X1 and X2X2 is exp(wT(X1−X2))exp⁡(wT(X1−X2)) and so does not depend on the class jj but only on the difference between the samples X1X1 and X2X2.

Optimization

Model estimation can be posed as an optimization problem. Here, we minimize the loss function for the model, defined as minus the log-likelihood:

L(w,θ)=−n∑i=1log(ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))L(w,θ)=−∑i=1nlog⁡(ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))

In this sum all terms are convex on ww, thus the loss function is convex over ww. It might be also jointly convex over ww and θθ, although I haven't checked. I use the function fmin_slsqp in scipy.optimize to optimize LLunder the constraint that θθ is a non-decreasing vector. There might be better options, I don't know. If you do know, please leave a comment!.

Using the formula log(ϕ(t))′=(1−ϕ(t))log⁡(ϕ(t))′=(1−ϕ(t)), we can compute the gradient of the loss function as

∇wL(w,θ)=n∑i=1Xi(1−ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))∇θL(w,θ)=n∑i=1eyi(1−ϕ(θyi−wTXi)−11−exp(θyi−1−θyi))+eyi−1(1−ϕ(θyi−1−wTXi)−11−exp(−(θyi−1−θyi)))∇wL(w,θ)=∑i=1nXi(1−ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))∇θL(w,θ)=∑i=1neyi(1−ϕ(θyi−wTXi)−11−exp⁡(θyi−1−θyi))+eyi−1(1−ϕ(θyi−1−wTXi)−11−exp⁡(−(θyi−1−θyi)))

where eiei is the iith canonical vector.

Code

I've implemented a Python version of this algorithm using Scipy'soptimize.fmin_slsqp function. This takes as arguments the loss function, the gradient denoted before and a function that is > 0 when the inequalities on θθ are satisfied.

Code can be found here as part of the minirank package, which is my sandbox for code related to ranking and ordinal regression. At some point I would like to submit it to scikit-learn but right now the I don't know how the code will scale to medium-scale problems, but I suspect not great. On top of that I'm not sure if there is a real demand of these models for scikit-learn and I don't want to bloat the package with unused features.

Performance

I compared the prediction accuracy of this model in the sense of mean absolute error (IPython notebook) on the boston house-prices dataset. To have an ordinal variable, I rounded the values to the closest integer, which gave me a problem of size 506 ×× 13 with 46 different target values. Although not a huge increase in accuracy, this model did give me better results on this particular dataset:

Here, ordinal logistic regression is the best-performing model, followed by a Linear Regression model and a One-versus-All Logistic regression model as implemented in scikit-learn.

python风控评分卡建模和风控常识(博客主亲自录制视频教程)

Logistic Ordinal Regression的更多相关文章

  1. Logistic/Softmax Regression

    辅助函数 牛顿法介绍 %% Logistic Regression close all clear %%load data x = load('ex4x.dat'); y = load('ex4y.d ...

  2. LOGIT REGRESSION

    Version info: Code for this page was tested in SPSS 20. Logistic regression, also called a logit mod ...

  3. spss

    编辑 SPSS(Statistical Product and Service Solutions),“统计产品与服务解决方案”软件.最初软件全称为“社会科学统计软件包” (SolutionsStat ...

  4. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  5. HAWQ + MADlib 玩转数据挖掘之(一)——安装

    一.MADlib简介 MADlib是Pivotal公司与伯克利大学合作的一个开源机器学习库,提供了精确的数据并行实现.统计和机器学习方法对结构化和非结构化数据进行分析,主要目的是扩展数据库的分析能力, ...

  6. 用SQL玩转数据挖掘之MADlib(一)——安装

    一.MADlib简介 MADlib是Pivotal公司与伯克利大学合作的一个开源机器学习库,提供了精确的数据并行实现.统计和机器学习方法对结构化和非结构化数据进行分析,主要目的是扩展数据库的分析能力, ...

  7. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  8. SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类

    https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf- ...

  9. [Machine Learning] Learning to rank算法简介

    声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...

随机推荐

  1. Leetcode题库——1.两数之和

    @author: ZZQ @software: PyCharm @file: addTwoNumbers.py @time: 2018/9/18 10:35 要求:给定两个非空链表来表示两个非负整数. ...

  2. Unity3d学习日记(六)

      今天在研究怎么在unity中将image上的图片保存到本地,主要参考下面两个链接:Unity Texture2D缩放.UNITY存储图片到本地   结合上述两个链接,我写了如下代码来将缩放后或者改 ...

  3. Apache+Nginx+php共存(一)

    在实际开发中个人的电脑中经常需要安装 WNMRP.WAMRP.LNMRP.LAMRP等各种开发环境来应对不同的开发需求. 此篇主要是对WINDOWS系统下 Apache+Nginx + PHP +My ...

  4. ASP.NET MVC中在 @RenderBody() 或者 @Html.Partial()中需要使用引入外部js,css

    今天想在后台封装一下bootstraptree这个插件,引入jquery.js bootstrap.js bootstrap.css bootstrap-tree.js后,我在页面查看脚本错误就连最简 ...

  5. sql中的duplicate的使用

    应用场景:有时候在做一些系统设置功能的时候,系统在第一次使用,或者初始化的时候,该设置信息并没有存在于数据库中,或者该系统设置信息永远只保存一条,没有必要为增加和修改这条信息而分别编写insert和u ...

  6. zabbix 自定义监控nginx

    zabbix自定义nginx监控项 查看nginx编译安装是否加上该选项,如果没有请重新编译安装 配置nginx.conf vim /usr/local/cpgroup/nginx/conf/vhos ...

  7. selenium基础-打开百度进行搜索

    1. 安装Python 2. 安装selenium 3. 下载谷歌驱动ChromeDriver,放到Python的Scripts目录下 4. 编写代码,如下 # coding: utf-8 from ...

  8. maven简单理解

    前言: maven项目也是一个项目,类似于javaProject,javaWebProject,就是多了些功能,其他也没啥,所以大家接触的时候不要害怕! 1 . 帮你下载jar包 maven项目会有一 ...

  9. iPhone X 的原深感模组

    物理与数字世界正走向融合,我们每天醒来的时间.睡眠时长.心率和步数等数据都会被分享.上传并转化为分析数据.无处不自的 AI.互联互通和软件平台将改变用户对现实的感知. 2018 年的 CES 展(国际 ...

  10. 【XSY1759】Alice and Bob

    Description XSY1759 Solution 肯定是离线对每个子树求答案. 考虑对每个子树建出所包含的值的Trie树,这点用启发式算法实现即可,即每个元素会被插入\(\mathcal O( ...