uva 116 - Unidirectional TSP (动态规划)
第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解。请过路大神不吝赐教。
状态:每一列的每个数[ i ][ j ]都是一个状态;
然后定义状态[ i ][ j ]的指标函数d[ i ][ j ]为从[ i ][ j ]向右出发的能够得到的最小的整数和;
状态转移方程:d[ i ][ j ]=min(d[ i+1 ][ j+1 ][ i-1 ][ j+1 ][ i ][ j+1 ])+a[ i ][ j ];
当中a[ i ][ j ]为当前位置的数值;
然后有了这些就能够用自己熟悉的方式对问题求解了。
我所知道的合理求解过程有两种:记忆化搜索和递推。
我所知道的输出方法有两种:在求解过程中记录最优位置并在最后输出。全然在输出过程中寻求最佳位置并输出;
下面是自己写的两种输出不同的方法,其处理求解过程均为递推,我觉得对本题来讲记忆化搜索比較复杂,而递推又显而易见
1.
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
int m,n;
int a[50][1100];
int rd[50][1100];
ll d[50][1100]; ll min_ans(ll t1,ll t2 ,ll t3)
{
long long temp=min(t1,t2);
temp=min(temp,t3);
return temp;
}
int min_pos(ll ans,int y,int x1,int x2,int x3)
{
int pos=m+1;
if(ans==d[x1][y])
{
pos=min(pos,x1);
}
if(ans==d[x2][y])
{
pos=min(pos,x2);
}
if(ans==d[x3][y])
{
pos=min(pos,x3);
}
return pos;
}
void dp()
{
for(int i=n;i>=1;i--)
{
for(int j=1;j<=m;j++)
{
int temp1=j-1;
if(temp1==0) temp1=m;
int temp2=j+1;
if(temp2>m) temp2=1;
ll t1,t2,t3,ans;int pos;
t1=d[temp1][i+1];t2=d[j][i+1];t3=d[temp2][i+1];
d[j][i]=min_ans(t1,t2,t3)+a[j][i];
rd[j][i]=min_pos(d[j][i]-a[j][i],i+1,temp1,j,temp2);
}
}
}
void print_ans(int pp)
{
int cur=1;
printf("%d",pp);
while(cur!=n)
{
printf(" %d",rd[pp][cur]);
pp=rd[pp][cur];
cur++;
}
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(d,0,sizeof(d));
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
}
}
dp();
long long min_ = -1;
for(int i=1;i<=m;i++)
{
if(min_==-1) min_=d[i][1];
else
min_=min(min_,d[i][1]);
}
int pp;
for(int i=1;i<=m;i++)
{
if(d[i][1]==min_)
{
pp=i;
break;
}
}
print_ans(pp);
printf("\n");
printf("%lld",d[pp][1]);
printf("\n");
}
return 0;
}
2.
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
int m,n;
int a[50][1100];
int rd[50][1100];
ll d[50][1100]; ll min_ans(ll t1,ll t2 ,ll t3)
{
long long temp=t1>t2? t2:t1;
return temp>t3?t3:temp;
} void dp()
{
for(int i=n; i>=1; i--)
{
for(int j=1; j<=m; j++)
{
int temp1=j-1;
if(temp1==0) temp1=m;
int temp2=j+1;
if(temp2>m) temp2=1;
ll t1,t2,t3,ans;
int pos;
t1=d[temp1][i+1];
t2=d[j][i+1];
t3=d[temp2][i+1];
d[j][i]=min_ans(t1,t2,t3)+a[j][i];
}
}
}
void print_ans(int pp,int cur)
{
printf("%d",pp);
cur++;
while(1&&cur<=n)
{
int i;
for(i=1; i<=m; i++)
{
if((d[i][cur]==d[pp][cur-1]-a[pp][cur-1]))
{
if(pp==1&&(i==m||i==pp||i==pp+1))
{
printf(" %d",i);
break;
}
else if(pp==m&&(i==1||i==pp||i==pp-1))
{
printf(" %d",i);
break;
}
else if(i>=pp-1&&i<=pp+1)
{
{
printf(" %d",i);
break;
}
}
else
continue;
}
}
pp=i;
cur++;
if(cur>n)
break;
}
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(d,0,sizeof(d));
for(int i=1; i<=m; i++)
{
for(int j=1; j<=n; j++)
{
scanf("%d",&a[i][j]);
}
}
dp();
long long min_ = -1;
for(int i=1; i<=m; i++)
{
if(min_==-1) min_=d[i][1];
else
min_=min(min_,d[i][1]);
}
int pp;
for(int i=1; i<=m; i++)
{
if(d[i][1]==min_)
{
pp=i;
break;
}
}
print_ans(pp,1);
printf("\n");
printf("%I64d",d[pp][1]);
printf("\n");
}
return 0;
}
第一次做动规题目,花了好久才做好,由于期间出了一些小错误(如今看来依然是一些细节上的错误。与动规无关),并且由于对动规的不熟悉。心里对其也有一点点的恐惧。
可是认定这一道动规并不难,有时自己独立杰出的第一道动规题目。十分想要独立将其AC。然后一直找细节測数据。最终是找到了几处非常不应该犯的细节处理上的错误。这一点让我非常伤心。但最终的AC胜过千言万语。
之后选择还有一种方法,也是磕磕绊绊才写出AC代码orz...
这就算是开了动规吧,多思考多钻研,多学习别人的优秀思路
uva 116 - Unidirectional TSP (动态规划)的更多相关文章
- uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVA 116 Unidirectional TSP(DP最短路字典序)
Description Unidirectional TSP Background Problems that require minimum paths through some domai ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
- UVa - 116 - Unidirectional TSP
Background Problems that require minimum paths through some domain appear in many different areas of ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
随机推荐
- Spring Boot应用连接数据库MySQL、及一个简单的demo
一.修改pom.xml文件 在项目的pom.xml文件上增加如下代码,添加依赖文件. <dependency> <groupId>mysql</groupId> & ...
- C++设计模式实现--模板(Template)模式
一. 问题 在面向对象系统的分析与设计过程中常常会遇到这样一种情况:对于某一个业务逻辑(算法实现)在不同的对象中有不同的细节实现,可是逻辑(算法)的框架(或通用的应用算法)是同样的.Template提 ...
- Golang 中错误与异常需要重新认识
如何进行错误处理,这是一个Go程序员之间,特别是一些新的Go程序员,会经常讨论的问题.讨论到最后往往由于以下代码的多次出现而变成了抱怨. if err != nil { return err } 我们 ...
- Android -- MeasureSpec
自定义控件都会去重写View的onMeasure方法,因为该方法指定该控件在屏幕上的大小. protected void onMeasure (int widthMeasureSpec, int he ...
- Back Track 5 之 网络踩点
DNS记录探测 dnsenum 针对NDS信息收集的工具 格式: ./dnsenum.pl dbsserver (域名) 请原谅我拿freestu.net这个学校团委的域名做的测试,求不黑!! dns ...
- 在Java程序中做字符串拼接时一定要记得的MessageFormat.format
Java里从来少不了字符串拼接的活,Java程序员也肯定用到过StringBuffer,StringBuilder,以及被编译器优化掉的+=.但这些都和下文要谈的无关. 比如有这样的字符串: 张三将去 ...
- 鼠标增强软件StrokeIt使用方法
1 可以从以下网址下载该软件,解压之后有两个文件 http://dl.pconline.com.cn/html_2/1/65/id=7185&pn=0.html 2 先安装英文版的,再安装中文 ...
- 基于Teigha.Net实现CAD到SHP的转换方案
CAD在测绘领域运用广泛,所以,现在有很多成果都是CAD格式,但其自身存在很多局限性,需将其转为支持更加广泛,存储更加完善的 SHP文件.ArcGIS中直接提供相关转换工具,但不能转换Xdata,Ar ...
- SqlServer日常积累(二)
1.Like运算符:将字符串表达式与 SQL表达式中的模式进行比较匹配. 语法 :expression Like 'pattern' ,expression为匹配字段,pattern为匹配字符串.可以 ...
- iOS \U7ea2 乱码 转换
通常网络请求的数据,如果不做处理在输出时显示是 \U 之类的编码的: 不需要导入别的类库解决方法 - (NSString *)replaceUnicode:(NSString *)unicodeStr ...