第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解。请过路大神不吝赐教。

状态:每一列的每个数[ i ][ j ]都是一个状态;

然后定义状态[ i ][ j ]的指标函数d[ i ][ j ]为从[ i ][ j ]向右出发的能够得到的最小的整数和;

状态转移方程:d[ i ][ j ]=min(d[ i+1 ][ j+1 ][ i-1 ][ j+1 ][ i ][ j+1 ])+a[ i ][ j ];

当中a[ i ][ j ]为当前位置的数值;

然后有了这些就能够用自己熟悉的方式对问题求解了。

我所知道的合理求解过程有两种:记忆化搜索和递推。

我所知道的输出方法有两种:在求解过程中记录最优位置并在最后输出。全然在输出过程中寻求最佳位置并输出;

下面是自己写的两种输出不同的方法,其处理求解过程均为递推,我觉得对本题来讲记忆化搜索比較复杂,而递推又显而易见

1.

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
int m,n;
int a[50][1100];
int rd[50][1100];
ll d[50][1100]; ll min_ans(ll t1,ll t2 ,ll t3)
{
long long temp=min(t1,t2);
temp=min(temp,t3);
return temp;
}
int min_pos(ll ans,int y,int x1,int x2,int x3)
{
int pos=m+1;
if(ans==d[x1][y])
{
pos=min(pos,x1);
}
if(ans==d[x2][y])
{
pos=min(pos,x2);
}
if(ans==d[x3][y])
{
pos=min(pos,x3);
}
return pos;
}
void dp()
{
for(int i=n;i>=1;i--)
{
for(int j=1;j<=m;j++)
{
int temp1=j-1;
if(temp1==0) temp1=m;
int temp2=j+1;
if(temp2>m) temp2=1;
ll t1,t2,t3,ans;int pos;
t1=d[temp1][i+1];t2=d[j][i+1];t3=d[temp2][i+1];
d[j][i]=min_ans(t1,t2,t3)+a[j][i];
rd[j][i]=min_pos(d[j][i]-a[j][i],i+1,temp1,j,temp2);
}
}
}
void print_ans(int pp)
{
int cur=1;
printf("%d",pp);
while(cur!=n)
{
printf(" %d",rd[pp][cur]);
pp=rd[pp][cur];
cur++;
}
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(d,0,sizeof(d));
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
}
}
dp();
long long min_ = -1;
for(int i=1;i<=m;i++)
{
if(min_==-1) min_=d[i][1];
else
min_=min(min_,d[i][1]);
}
int pp;
for(int i=1;i<=m;i++)
{
if(d[i][1]==min_)
{
pp=i;
break;
}
}
print_ans(pp);
printf("\n");
printf("%lld",d[pp][1]);
printf("\n");
}
return 0;
}

2.

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
int m,n;
int a[50][1100];
int rd[50][1100];
ll d[50][1100]; ll min_ans(ll t1,ll t2 ,ll t3)
{
long long temp=t1>t2? t2:t1;
return temp>t3?t3:temp;
} void dp()
{
for(int i=n; i>=1; i--)
{
for(int j=1; j<=m; j++)
{
int temp1=j-1;
if(temp1==0) temp1=m;
int temp2=j+1;
if(temp2>m) temp2=1;
ll t1,t2,t3,ans;
int pos;
t1=d[temp1][i+1];
t2=d[j][i+1];
t3=d[temp2][i+1];
d[j][i]=min_ans(t1,t2,t3)+a[j][i];
}
}
}
void print_ans(int pp,int cur)
{
printf("%d",pp);
cur++;
while(1&&cur<=n)
{
int i;
for(i=1; i<=m; i++)
{
if((d[i][cur]==d[pp][cur-1]-a[pp][cur-1]))
{
if(pp==1&&(i==m||i==pp||i==pp+1))
{
printf(" %d",i);
break;
}
else if(pp==m&&(i==1||i==pp||i==pp-1))
{
printf(" %d",i);
break;
}
else if(i>=pp-1&&i<=pp+1)
{
{
printf(" %d",i);
break;
}
}
else
continue;
}
}
pp=i;
cur++;
if(cur>n)
break;
}
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(d,0,sizeof(d));
for(int i=1; i<=m; i++)
{
for(int j=1; j<=n; j++)
{
scanf("%d",&a[i][j]);
}
}
dp();
long long min_ = -1;
for(int i=1; i<=m; i++)
{
if(min_==-1) min_=d[i][1];
else
min_=min(min_,d[i][1]);
}
int pp;
for(int i=1; i<=m; i++)
{
if(d[i][1]==min_)
{
pp=i;
break;
}
}
print_ans(pp,1);
printf("\n");
printf("%I64d",d[pp][1]);
printf("\n");
}
return 0;
}

第一次做动规题目,花了好久才做好,由于期间出了一些小错误(如今看来依然是一些细节上的错误。与动规无关),并且由于对动规的不熟悉。心里对其也有一点点的恐惧。

可是认定这一道动规并不难,有时自己独立杰出的第一道动规题目。十分想要独立将其AC。然后一直找细节測数据。最终是找到了几处非常不应该犯的细节处理上的错误。这一点让我非常伤心。但最终的AC胜过千言万语。

之后选择还有一种方法,也是磕磕绊绊才写出AC代码orz...

这就算是开了动规吧,多思考多钻研,多学习别人的优秀思路

uva 116 - Unidirectional TSP (动态规划)的更多相关文章

  1. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  2. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  3. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  4. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  5. uva 116 Unidirectional TSP(动态规划,多段图上的最短路)

    这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...

  6. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

  7. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  8. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  9. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

随机推荐

  1. IOS Key-Value Observing (KVO)

    kvo,与观察者模式类似,通过给指定的对象设置观察者,来检测对象的变化,当指定的对象的属性被修改后,用于作为观察者的对象会接收到通知.简单的说就是每次指定的被观察的对象的属性被修改后,kvo就会自动通 ...

  2. telnet 退出命令

    telnet xxx port ctrl + ] telnet > quit ctrl + w 是清除命令 转自: http://wangyifeng.blog.51cto.com/214490 ...

  3. UGUI 屏幕适配 导致 BoxCollider无效 解决记录

    从来没有做过一个完整的游戏,所以用UGUI来做个手游界的 " Hello World " - 微信打飞机.看起来easy做起来也碰到各种奇异的问题. 昨天导出安卓包之后,在我的MX ...

  4. (字符串)最长公共子序列(Longest-Common-Subsequence,LCS)

    问题: 最长公共子序列就是寻找两个给定序列的子序列,该子序列在两个序列中以相同的顺序出现,但是不必要是连续的. 例如序列X=ABCBDAB,Y=BDCABA.序列BCA是X和Y的一个公共子序列,但是不 ...

  5. DispatcherTimer

    1.IsEnabled 表示计时器是否已经启动. 2.DispatcherTimer处于当前线程的管理,不会新建一个线程专门用于计时操作,也就是说,当前线程可能会阻塞计时器.因此,Dispatcher ...

  6. zookeeperclient代码解读

    近期一直在忙WebPageTest(下面简称wpt)开源库的改动工作,当中一项工作须要将zookeeper(下面简称zk)集成到wpt里. zk作为分布式系统的同步工具.实现了写的原子性(要么失败.要 ...

  7. C#.NET常见问题(FAQ)-在VS程序如何取消.vshost的进程

    双击执行一个EXE程序,会有两个进程,程序关闭之后,貌似只能关闭你的程序,附加的vshost.exe仍然存在   在调试页面,改成release,同时取消最后一项启用承载进程   在生成页面,将高级选 ...

  8. 算法笔记_196:历届试题 剪格子(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+|10* 1|52|+--****--+|20|30* 1|**** ...

  9. linux的fork()函数-进程控制

    进程作为构成系统的基本细胞,不仅是系统中独立活动的实体,而且是独立竞争资源的基本实体.它要经历创建.执行.等待.终止等一系列过程. 一.fork入门知识(转载) 一个进程,包括代码.数据和分配给进程的 ...

  10. SQL Server 2012 “阻止保存要求又一次创建表”的更改问题的设置方法

    我们在用SQL Server 2012 建完表后,插入或改动随意列时,提示:当用户在在SQL Server 2012企业管理器中更改表结构时.必需要先删除原来的表.然后又一次创建新表,才干完毕表的更改 ...