2337: [HNOI2011]XOR和路径

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1170  Solved: 683

Description

Input

Output

Sample Input

Sample Output

HINT

Source

【分析】

  这题终于自己打出来了高斯消元。没有对比代码了。。。

  很心酸啊。。调试的时候是完全没有方向的,高斯消元还要自己一步步列式子然后消元解。。【为什么错都不知道有时候

  这题显然是不能直接记录异或和然后DP的。

  显然是要拆位的。

  拆位之后f[i][0]表示从i走,走到终点,这一位异或和为0的概率。

  f[i][0]=f[j][0]*p (i->j 这一位边权为0)+f[j][1]*p (i->j 这一位边权为1)

  反之不写了

  f[n][0]=1 f[n][1]=0

  就是(2*n)^2规模的高斯消元。

  然后用f[1][1]乘这一位的贡献加进答案里面就好。

  一开始被卡精,eps太小,后来数组爆一位!!醉了!!

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 110
#define Maxm 10010
const double eps=1e-; struct node
{
int x,y,c,next;
}t[Maxm*];
int first[Maxn],len;
double d[Maxn];
void ins(int x,int y,int c)
{
d[x]+=1.0;
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} bool dcmp(double x) {return fabs(x)>eps;} double a[*Maxn][*Maxn],f[*Maxn];
void gauss(int n)
{
for(int i=;i<n;i++)
{
// if(a[i][i]==0) continue;
int t=i;
for(int j=i+;j<=n;j++) if(fabs(a[j][i])>fabs(a[t][i])) t=j;
if(t!=i)
{
for(int j=;j<=n;j++) swap(a[i][j],a[t][j]);
}
for(int j=i+;j<=n;j++)
{
double t=a[j][i]/a[i][i];
if(dcmp(a[j][i]))
{
for(int k=;k<=n;k++) a[j][k]-=a[i][k]*t;
}
}
}
for(int i=n-;i>=;i--)
{
for(int j=i+;j<n;j++) a[i][n]+=f[j]*a[i][j];
f[i]=-a[i][n]/a[i][i];
}
} int main()
{
int n,m,mx=;
scanf("%d%d",&n,&m);
len=;memset(first,,sizeof(first));
for(int i=;i<=n;i++) d[i]=;
for(int i=;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
mx=max(mx,c);
ins(x,y,c);
if(x!=y) ins(y,x,c);
}
int l=;while((<<l)<=mx) l++;
double ans=;
for(int i=;i<=l;i++)
{
for(int j=;j<=n+n;j++) for(int k=;k<=n+n;k++) a[j][k]=;
for(int j=;j<n;j++)
{
a[j][j]=1.0;a[j+n][j+n]=1.0;
for(int k=first[j];k;k=t[k].next)
{
int y=t[k].y;
if(t[k].c&(<<i)) a[j][y+n]-=1.0/d[j],a[j+n][y]-=1.0/d[j];
else a[j][y]-=1.0/d[j],a[j+n][y+n]-=1.0/d[j];
}
a[j][(n<<)+]=a[j+n][(n<<)+]=;
}
a[n][n]=1.0;a[n+n][n+n]=1.0;
a[n][(n<<)+]=-1.0;a[n<<][(n<<)+]=;
gauss((n<<)+);
// printf("%.10lf\n",f[n+1]);
ans+=1.0*(<<i)*f[n+];
}
printf("%.3lf\n",ans);
return ;
}

【怎么说回家前A掉这题还是很兴奋的

【也说明我能自己打出概率的高斯消元了耶!

2017-04-22 16:06:09

【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)的更多相关文章

  1. [HNOI2011]XOR和路径 概率期望 高斯消元

    题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...

  2. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  3. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  4. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

  5. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

  6. LightOJ - 1151概率dp+高斯消元

    概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...

  7. BZOJ3270 博物館 概率DP 高斯消元

    BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...

  8. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

  9. 【BZOJ3640】JC的小苹果 概率DP+高斯消元

    [BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...

  10. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

随机推荐

  1. HTML字体的设置

    CSS字体设置 box-sizing:border #content-box   box-shadow:设置盒子边框的阴影.     字体动作:   font-family:设置字体.比如:‘微软雅黑 ...

  2. 【译】第六篇 SQL Server代理深入作业步骤工作流

    本篇文章是SQL Server代理系列的第六篇,详细内容请参考原文. 正如这一系列的前几篇所述,SQL Server代理作业是由一系列的作业步骤组成,每个步骤由一个独立的类型去执行.每个作业步骤在技术 ...

  3. javascript 中的类数组和数组

    什么是类数组呢? 我们先来看一段代码: function fn() { console.dir(arguments); } fn(1,2,3,4,5,6,7,8,9,10); 这段代码的执行后,在 c ...

  4. 关于 jQuery 中的 $.data() 方法和 jQuery 对象上的data 方法

    参见文章:http://www.it165.net/pro/html/201404/11922.html

  5. js面向对象编程思想

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  6. Spring4笔记2--Spring的第一个程序

    Spring程序开发: 1. 导入jar包(略) 2. 创建Spring配置文件: Spring 配置文件的文件名可以随意,但 Spring 建议的名称为 applicationContext.xml ...

  7. 【洛谷题解】P2303 [SDOi2012]Longge的问题

    题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...

  8. 【转】Spring MVC 标签总结

    1.@Controller 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理层处理之后封装成一个Model ...

  9. The data protection operation was unsuccessful. This may have been caused by not having the user profile loaded for the current thread's user context,

    在iis7.0布署网站后运行的错误,大致意思是:数据保护操作是不成功的.这可能是由于没有为当前线程的用户加载用户配置文件的导致 解决办法: 先为自己的网站新建一个应用程序池,然后新建的应用程序池上右键 ...

  10. Dropout caffe源码

    GPU和CPU实现的不一样,这里贴的是CPU中的drop out 直接看caffe里面的源码吧:(产生满足伯努利分布的随机数mask,train的时候,data除以p,...... scale_ = ...