2337: [HNOI2011]XOR和路径

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1170  Solved: 683

Description

Input

Output

Sample Input

Sample Output

HINT

Source

【分析】

  这题终于自己打出来了高斯消元。没有对比代码了。。。

  很心酸啊。。调试的时候是完全没有方向的,高斯消元还要自己一步步列式子然后消元解。。【为什么错都不知道有时候

  这题显然是不能直接记录异或和然后DP的。

  显然是要拆位的。

  拆位之后f[i][0]表示从i走,走到终点,这一位异或和为0的概率。

  f[i][0]=f[j][0]*p (i->j 这一位边权为0)+f[j][1]*p (i->j 这一位边权为1)

  反之不写了

  f[n][0]=1 f[n][1]=0

  就是(2*n)^2规模的高斯消元。

  然后用f[1][1]乘这一位的贡献加进答案里面就好。

  一开始被卡精,eps太小,后来数组爆一位!!醉了!!

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 110
#define Maxm 10010
const double eps=1e-; struct node
{
int x,y,c,next;
}t[Maxm*];
int first[Maxn],len;
double d[Maxn];
void ins(int x,int y,int c)
{
d[x]+=1.0;
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} bool dcmp(double x) {return fabs(x)>eps;} double a[*Maxn][*Maxn],f[*Maxn];
void gauss(int n)
{
for(int i=;i<n;i++)
{
// if(a[i][i]==0) continue;
int t=i;
for(int j=i+;j<=n;j++) if(fabs(a[j][i])>fabs(a[t][i])) t=j;
if(t!=i)
{
for(int j=;j<=n;j++) swap(a[i][j],a[t][j]);
}
for(int j=i+;j<=n;j++)
{
double t=a[j][i]/a[i][i];
if(dcmp(a[j][i]))
{
for(int k=;k<=n;k++) a[j][k]-=a[i][k]*t;
}
}
}
for(int i=n-;i>=;i--)
{
for(int j=i+;j<n;j++) a[i][n]+=f[j]*a[i][j];
f[i]=-a[i][n]/a[i][i];
}
} int main()
{
int n,m,mx=;
scanf("%d%d",&n,&m);
len=;memset(first,,sizeof(first));
for(int i=;i<=n;i++) d[i]=;
for(int i=;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
mx=max(mx,c);
ins(x,y,c);
if(x!=y) ins(y,x,c);
}
int l=;while((<<l)<=mx) l++;
double ans=;
for(int i=;i<=l;i++)
{
for(int j=;j<=n+n;j++) for(int k=;k<=n+n;k++) a[j][k]=;
for(int j=;j<n;j++)
{
a[j][j]=1.0;a[j+n][j+n]=1.0;
for(int k=first[j];k;k=t[k].next)
{
int y=t[k].y;
if(t[k].c&(<<i)) a[j][y+n]-=1.0/d[j],a[j+n][y]-=1.0/d[j];
else a[j][y]-=1.0/d[j],a[j+n][y+n]-=1.0/d[j];
}
a[j][(n<<)+]=a[j+n][(n<<)+]=;
}
a[n][n]=1.0;a[n+n][n+n]=1.0;
a[n][(n<<)+]=-1.0;a[n<<][(n<<)+]=;
gauss((n<<)+);
// printf("%.10lf\n",f[n+1]);
ans+=1.0*(<<i)*f[n+];
}
printf("%.3lf\n",ans);
return ;
}

【怎么说回家前A掉这题还是很兴奋的

【也说明我能自己打出概率的高斯消元了耶!

2017-04-22 16:06:09

【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)的更多相关文章

  1. [HNOI2011]XOR和路径 概率期望 高斯消元

    题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...

  2. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  3. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  4. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

  5. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

  6. LightOJ - 1151概率dp+高斯消元

    概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...

  7. BZOJ3270 博物館 概率DP 高斯消元

    BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...

  8. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

  9. 【BZOJ3640】JC的小苹果 概率DP+高斯消元

    [BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...

  10. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

随机推荐

  1. Linux基础-网络配置

    任务目标:临时配置网络ip,网关,DNS,然后重启network:写配置文件永久保存网络配置 临时配置ens33网卡IP地址为192.168.30.99,查看更改完的ifconfig信息: 重新启动n ...

  2. PHP编程效率的20个要点-[转]

    用 单引号代替双引号来包含字符串,这样做会更快一些.因为PHP会在双引号包围的字符串中搜寻变量,单引号则 不会,注意:只有echo能这么做,它是一种可以把多个字符 串当作参数的“函数”(译注:PHP手 ...

  3. 【译】第二篇 Integration Services:SSIS数据泵

    本篇文章是Integration Services系列的第二篇,详细内容请参考原文. 简介SSIS用于移动数据.数据流任务提供此功能.因为这个原因,当介绍SSIS时我喜欢从数据流任务开始.数据流任务的 ...

  4. WindowsServer2003双网卡配置

    今天突然被问起,找资料10+分钟才找到记录,因此再次记录下: route -p delete 0.0.0.0 route -p add 0.0.0.0 mask 0.0.0.0 58.240.115. ...

  5. C# 读取指定文件夹下所有文件

    #region 读取文件 //返回指定目录中的文件的名称(绝对路径) string[] files = System.IO.Directory.GetFiles(@"D:\Test" ...

  6. vue总结 01基础特性

    最近有时间来总结一下vue的知识: 一.vue.js 被定义成一个开发web界面的前端库,是一个非常轻量的工具.vue.js本身具有响应式和组件化的特点. 我们不需要在维护视图和数据的统一上花费大量的 ...

  7. Python解决八皇后问题的代码【解读】

    八皇后问题 来自于西方象棋(现在叫 国际象棋,英文chess),详情可见百度百科. 在西方象棋中,有一种叫做皇后的棋子,在棋盘上,如果双方的皇后在同一行.同一列或同一斜线上,就会互相攻击. 八皇后问题 ...

  8. mysql中utf8编码的utf8_bin,utf8_general_cs,utf8_bin的区别

    utf8_general_ci 不区分大小写,这个你在注册用户名和邮箱的时候就要使用. utf8_general_cs 区分大小写,如果用户名和邮箱用这个 就会照成不良后果 utf8_bin: com ...

  9. 如何查看页面是否开启了gzip压缩

    1.谷歌浏览器 F12 2.在表头单击鼠标右键 3.如果开启了gzip则显示gzip,没有则是空

  10. 阿里百川码力APP监控 来了!

    阿里百川码力APP监控  来了!这个APP监控 和手淘一起成长历经千锤百炼 走过千BUG万坑如今百川起产品   为了让你的APP更好 用户更爽! 在移动互联网时代,一款应用是否成功,用户体验是一个关键 ...