Deep Q-Network 学习笔记(五)—— 改进③:Prioritized Replay 算法
也就是优先采样,这里的推导部分完全没看懂 Orz,这里也只是记录实现代码。
也就是看了以下两篇文章对应做了实现。
莫烦老师的教程:
还有这位大神的:
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/
https://github.com/jaara/AI-blog
这里同样是在上一篇的基础上完善。
完整实现
tree 优先采样:
import numpy as np
import random class SumTree:
write = 0 def __init__(self, capacity):
# 容量。
self.capacity = capacity
self.tree = np.zeros(2 * capacity - 1)
self.data = np.zeros(capacity, dtype=object) def _propagate(self, idx, change):
# 整数除法。
parent = (idx - 1) // 2 self.tree[parent] += change if parent != 0:
self._propagate(parent, change) def _retrieve(self, idx, s):
"""
示例:
样本数(sample num):4 个,则 Tree 的 size 是:4 X 2 - 1 = 7。
其中,size 的后 sample num 个是单个样本的优先级,其它的是父级,即:父级的优先级=SUM(子级的优先级)。
如果 data = ["test1", "test2", "test3", "test4"],它们单个的优先级对应的就是下图中的“3, 4, 5, 6”。
Tree structure and array storage: Tree index:
18 -> storing priority sum
/ \
7 11
/ \ / \
3 4 5 6 -> storing priority for transitions Array type for storing:
[18,7,11,3,4,5,6]
"""
left = 2 * idx + 1
right = left + 1 if left >= len(self.tree):
return idx if s <= self.tree[left]:
return self._retrieve(left, s)
else:
return self._retrieve(right, s - self.tree[left]) def total(self):
return self.tree[0] def add(self, p, data):
idx = self.write + self.capacity - 1 self.data[self.write] = data
self.update(idx, p) self.write += 1
if self.write >= self.capacity:
self.write = 0 def update(self, idx, p):
change = p - self.tree[idx] self.tree[idx] = p
self._propagate(idx, change) def get(self, s):
idx = self._retrieve(0, s)
data_index = idx - self.capacity + 1 return idx, self.tree[idx], self.data[data_index] class Memory:
e = 0.01
a = 0.6 def __init__(self, capacity):
self.tree = SumTree(capacity) def _get_priority(self, error):
return (error + self.e) ** self.a def add(self, error, sample):
p = self._get_priority(error)
self.tree.add(p, sample) def sample(self, n):
batch = [] # 计算样本抽取的区间。
segment = self.tree.total() / n for i in range(n):
# 第 i 个样本抽取区间的开始序号。
a = segment * i
# 第 i 个样本抽取区间的结束序号。
b = segment * (i + 1) # 在(a, b)的区间内随机选数。
s = random.uniform(a, b)
# 根据 s 来抽取,并将数据(数据序号,优先级,数据)返回。
(idx, p, data) = self.tree.get(s)
# 将样本增加到集合里。
batch.append((idx, data)) return batch def update(self, idx, error):
p = self._get_priority(error)
self.tree.update(idx, p) if __name__ == "__main__":
memory = Memory(4)
memory.add(1, "test1")
print(memory.tree.data)
print(memory.tree.tree)
memory.add(1, "test2")
print(memory.tree.data)
print(memory.tree.tree)
memory.add(2, "test3")
memory.add(3, "test4")
samples, sample_index, i_s_weight = memory.sample(2)
print("samples:", samples)
print("sample_index:", sample_index)
print("Importance-Sampling Weight", i_s_weight)
神经网络:
import tensorflow as tf
import numpy as np class DeepQNetwork:
# q_eval 网络状态输入参数。
q_eval_input = None # # q_eval 网络动作输入参数。
# q_action_input = None # q_eval 网络中 q_target 的输入参数。
q_eval_target = None # q_eval 网络输出结果。
q_eval_output = None # q_eval 网络输出的结果中的最优得分。
q_predict = None # q_eval 网络输出的结果中当前选择的动作得分。
reward_action = None # q_eval 网络损失函数。
loss = None # q_eval 网络训练。
train_op = None # q_target 网络状态输入参数。
q_target_input = None # q_target 网络输出结果。
q_target_output = None # 更换 target_net 的步数。
replace_target_stepper = 0 def __init__(self, input_num, output_num, learning_rate=0.001, replace_target_stepper=300, session=None):
self.learning_rate = learning_rate
self.INPUT_NUM = input_num
self.OUTPUT_NUM = output_num
self.replace_target_stepper = replace_target_stepper self.create() if session is None:
self.session = tf.InteractiveSession()
self.session.run(tf.initialize_all_variables())
else:
self.session = session def create(self):
neuro_layer_1 = 3
w_init = tf.random_normal_initializer(0, 0.3)
b_init = tf.constant_initializer(0.1) # -------------- 创建 eval 神经网络, 及时提升参数 -------------- #
self.q_eval_input = tf.placeholder(shape=[None, self.INPUT_NUM], dtype=tf.float32, name="q_eval_input")
# self.q_action_input = tf.placeholder(shape=[None, self.OUTPUT_NUM], dtype=tf.float32)
self.q_eval_target = tf.placeholder(shape=[None, self.OUTPUT_NUM], dtype=tf.float32, name="q_target") with tf.variable_scope("eval_net"):
q_name = ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES] with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.INPUT_NUM, neuro_layer_1], initializer=w_init, collections=q_name)
b1 = tf.get_variable('b1', [1, neuro_layer_1], initializer=b_init, collections=q_name)
l1 = tf.nn.relu(tf.matmul(self.q_eval_input, w1) + b1) with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [neuro_layer_1, self.OUTPUT_NUM], initializer=w_init, collections=q_name)
b2 = tf.get_variable('b2', [1, self.OUTPUT_NUM], initializer=b_init, collections=q_name)
self.q_eval_output = tf.matmul(l1, w2) + b2
self.q_predict = tf.argmax(self.q_eval_output, 1) with tf.variable_scope('loss'):
# # 取出当前动作的得分。
# self.reward_action = tf.reduce_sum(tf.multiply(self.q_eval_output, self.q_action_input),
# reduction_indices=1)
# self.loss = tf.reduce_mean(tf.square((self.q_eval_target - self.reward_action)))
self.loss = tf.reduce_mean(tf.squared_difference(self.q_eval_target, self.q_eval_output)) with tf.variable_scope('train'):
self.train_op = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.loss) # -------------- 创建 target 神经网络, 及时提升参数 -------------- #
self.q_target_input = tf.placeholder(shape=[None, self.INPUT_NUM], dtype=tf.float32, name="q_target_input") with tf.variable_scope("target_net"):
t_name = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES] with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.INPUT_NUM, neuro_layer_1], initializer=w_init, collections=t_name)
b1 = tf.get_variable('b1', [1, neuro_layer_1], initializer=b_init, collections=t_name)
l1 = tf.nn.relu(tf.matmul(self.q_target_input, w1) + b1) with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [neuro_layer_1, self.OUTPUT_NUM], initializer=w_init, collections=t_name)
b2 = tf.get_variable('b2', [1, self.OUTPUT_NUM], initializer=b_init, collections=t_name)
self.q_target_output = tf.matmul(l1, w2) + b2 def replace_target_params(self):
"""
使用 Tensorflow 中的 assign 功能替换 target_net 所有参数。
:return:
"""
# 提取 target_net 的参数。
t_params = tf.get_collection('target_net_params')
# 提取 eval_net 的参数。
e_params = tf.get_collection('eval_net_params')
# 更新 target_net 参数。
self.session.run([tf.assign(t, e) for t, e in zip(t_params, e_params)]) def get_q(self, input_data):
return self.session.run(self.q_eval_output, {self.q_eval_input: input_data}) def get_next_q(self, input_data):
return self.session.run(self.q_target_output, {self.q_target_input: input_data}) def get_predict(self, input_data):
return np.max(self.get_q(input_data)) def get_action(self, input_data):
return np.argmax(self.get_q(input_data)) def train(self, input_data, y_):
_, cost = self.session.run([self.train_op, self.loss],
feed_dict={self.q_eval_input: input_data,
self.q_eval_target: y_})
return cost
主逻辑:
import numpy as np
from collections import deque
import random
from q_network import DeepQNetwork
from tree import Memory class Agent: r = np.array([[-1, -1, -1, -1, 0, -1],
[-1, -1, -1, 0, -1, 100.0],
[-1, -1, -1, 0, -1, -1],
[-1, 0, 0, -1, 0, -1],
[0, -1, -1, 1, -1, 100],
[-1, 0, -1, -1, 0, 100],
]) # 神经网络。
network = None def __init__(self, train_num=2000, prioritized=True):
# 执行步数。
self.step_index = 0 # 状态数。
self.STATE_NUM = 6 # 动作数。
self.ACTION_NUM = 6 # 记忆上限。
self.memory_size = 5000 # 当前记忆数。
self.memory_counter = 0 self.prioritized = prioritized if prioritized:
self.replay_memory_store = Memory(self.memory_size)
else:
# 保存观察到的执行过的行动的存储器,即:曾经经历过的记忆。
self.replay_memory_store = deque() # 训练之前观察多少步。
self.OBSERVE = 5000 self.TRAIN_NUM = train_num # 训练步数统计。
self.learn_step_counter = 0 # 选取的小批量训练样本数。
self.BATCH = 20 # γ经验折损率。
self.gamma = 0.9 # -------------------- 探索策略 -------------------- #
# epsilon 的最小值,当 epsilon 小于该值时,将不在随机选择行为。
self.FINAL_EPSILON = 0.0001 # epsilon 的初始值,epsilon 逐渐减小。
self.INITIAL_EPSILON = 0.1 # epsilon 衰减的总步数。
self.EXPLORE = 3000000. # 探索模式计数。
self.epsilon = 0
# -------------------- 探索策略 -------------------- # # 生成神经网络。
self.network = DeepQNetwork(input_num=self.STATE_NUM,
output_num=self.ACTION_NUM,
learning_rate=0.001,
replace_target_stepper=1000,
session=None) # 生成一个状态矩阵(6 X 6),每一行代表一个状态。
self.state_list = np.identity(self.STATE_NUM) # 生成一个动作矩阵。
self.action_list = np.identity(self.ACTION_NUM) # 输出图表。
self.q_list = []
self.running_q = 0 def select_action(self, current_state_index):
"""
根据策略选择动作。
:param current_state_index:
:return:
"""
# 获得当前状态。
current_state = self.state_list[current_state_index:current_state_index + 1] # 根据当前状态获得在 Q 网络中最有价值的动作,并返回动作序号。
current_action_index = self.network.get_action(current_state) # 输出图表。
actions_value = self.network.get_predict(current_state)
self.running_q = self.running_q * 0.99 + 0.01 * np.max(actions_value)
self.q_list.append(self.running_q) if np.random.uniform() < self.epsilon:
current_action_index = np.random.randint(0, self.ACTION_NUM) # 开始训练后,在 epsilon 小于一定的值之前,将逐步减小 epsilon。
if self.step_index > self.OBSERVE and self.epsilon > self.FINAL_EPSILON:
self.epsilon -= (self.INITIAL_EPSILON - self.FINAL_EPSILON) / self.EXPLORE return current_action_index def save_store(self, current_state_index, current_action_index, current_reward, next_state_index, done):
"""
保存记忆。
:param current_state_index: 当前状态 index。
:param current_action_index: 动作 index。
:param current_reward: 奖励。
:param next_state_index: 下一个状态 index。
:param done: 是否结束。
:return:
"""
current_state = self.state_list[current_state_index:current_state_index + 1]
current_action = self.action_list[current_action_index:current_action_index + 1]
next_state = self.state_list[next_state_index:next_state_index + 1] # 保存数据(当前状态, 当前执行的动作, 当前动作的得分,下一个状态,是否结束)。
memory_data = (current_state, current_action, current_reward, next_state, done) if self.prioritized:
x, y, errors = self._get_targets([(0, memory_data)])
self.replay_memory_store.add(errors[0], memory_data)
else:
# 记忆动作。
self.replay_memory_store.append(memory_data) # 如果超过记忆的容量,则将最久远的记忆移除。
if len(self.replay_memory_store) > self.memory_size:
self.replay_memory_store.popleft() self.memory_counter += 1 def run_game(self, state_index, action_index):
"""
执行动作。
:param state_index: 当前状态。
:param action_index: 执行的动作。
:return:
"""
reward = self.r[state_index][action_index] next_state = action_index done = False if action_index == 5:
done = True return next_state, reward, done def experience_replay(self):
"""
记忆回放。
:return:
"""
# 检查是否替换 target_net 参数
if self.learn_step_counter % self.network.replace_target_stepper == 0:
self.network.replace_target_params() # 随机选择一小批记忆样本。
batch = self.BATCH if self.memory_counter > self.BATCH else self.memory_counter if self.prioritized:
minibatch = self.replay_memory_store.sample(batch)
else:
minibatch = random.sample(self.replay_memory_store, batch) x, y, errors = self._get_targets(minibatch) if self.prioritized:
# update errors
for i in range(len(minibatch)):
idx = minibatch[i][0]
self.replay_memory_store.update(idx, errors[i]) self.network.train(x, y)
else:
self.network.train(x, y) self.learn_step_counter += 1 def _get_targets(self, batch):
if self.prioritized:
# (当前状态,当前动作,当前得分,下一个状态) = (s, a, r, s_)。
current_states = np.vstack([o[1][0] for o in batch])
current_actions = np.vstack([o[1][1] for o in batch])
current_rewards = np.vstack([o[1][2] for o in batch])
next_states = np.vstack([o[1][3] for o in batch])
else:
current_states = np.vstack([o[0] for o in batch])
current_actions = np.vstack([o[1] for o in batch])
current_rewards = np.vstack([o[2] for o in batch])
next_states = np.vstack([o[3] for o in batch]) # 当前状态在 Q 网络的得分。
p = self.network.get_q(current_states)
# 下一状态在 Q 网络的得分。
p_ = self.network.get_q(next_states)
# 下一状态在 Target 网络的得分。
p_target = self.network.get_next_q(next_states) x = np.zeros((len(batch), self.STATE_NUM))
y = np.zeros((len(batch), self.ACTION_NUM))
errors = np.zeros(len(batch)) for i in range(len(batch)):
s = current_states[i]
a = current_actions[i]
r = current_rewards[i][0]
s_ = next_states[i] a_index = np.argmax(a) # 获得第 i 个样本当前状态的所有动作的 Q 值表。
target_q = p[i]
# 获得第 i 个样本当前动作的 Q 得分。
current_q = target_q[a_index] max_q = p_target[i][np.argmax(p_[i])] if r <= -1 or s_ is None:
target_q[a_index] = r
else:
target_q[a_index] = r + self.gamma * max_q x[i] = s
y[i] = target_q
errors[i] = abs(current_q - target_q[a_index]) return x, y, errors def train(self):
"""
训练。
:return:
"""
# 初始化当前状态。
current_state = np.random.randint(0, self.ACTION_NUM - 1)
self.epsilon = self.INITIAL_EPSILON while True:
# 选择动作。
action = self.select_action(current_state) # 执行动作,得到:下一个状态,执行动作的得分,是否结束。
next_state, reward, done = self.run_game(current_state, action) # 保存记忆。
self.save_store(current_state, action, reward, next_state, done) # 先观察一段时间累积足够的记忆在进行训练。
if self.step_index > self.OBSERVE:
self.experience_replay() if self.step_index - self.OBSERVE > self.TRAIN_NUM:
break if done:
current_state = np.random.randint(0, self.ACTION_NUM - 1)
else:
current_state = next_state self.step_index += 1 def pay(self):
"""
运行并测试。
:return:
"""
self.train() # 显示 R 矩阵。
print(self.r) for index in range(5): start_room = index print("#############################", "Agent 在", start_room, "开始行动", "#############################") current_state = start_room step = 0 target_state = 5 while current_state != target_state:
next_state = self.network.get_action(self.state_list[current_state:current_state + 1]) print("Agent 由", current_state, "号房间移动到了", next_state, "号房间") current_state = next_state step += 1 print("Agent 在", start_room, "号房间开始移动了", step, "步到达了目标房间 5") print("#############################", "Agent 在", 5, "结束行动", "#############################") def show_plt(self):
import matplotlib.pyplot as plt
plt.plot(np.array(self.q_list), c='r', label='natural')
# plt.plot(np.array(q_double), c='b', label='double')
plt.legend(loc='best')
plt.ylabel('Q eval')
plt.xlabel('training steps')
plt.grid()
plt.show() if __name__ == "__main__":
agent = Agent(train_num=20000, prioritized=True)
agent.pay()
agent.show_plt()
Deep Q-Network 学习笔记(五)—— 改进③:Prioritized Replay 算法的更多相关文章
- 强化学习系列之:Deep Q Network (DQN)
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3. ...
- 深度增强学习--Deep Q Network
从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import n ...
- AlphaGo的前世今生(一)Deep Q Network and Game Search Tree:Road to AI Revolution
这一个专题将会是有关AlphaGo的前世今生以及其带来的AI革命,总共分成三节.本人水平有限,如有错误还望指正.如需转载,须征得本人同意. Road to AI Revolution(通往AI革命之路 ...
- 【opencv学习笔记五】一个简单程序:图像读取与显示
今天我们来学习一个最简单的程序,即从文件读取图像并且创建窗口显示该图像. 目录 [imread]图像读取 [namedWindow]创建window窗口 [imshow]图像显示 [imwrite]图 ...
- Deep Q Network(DQN)原理解析
1. 前言 在前面的章节中我们介绍了时序差分算法(TD)和Q-Learning,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q- ...
- Network In Network学习笔记
Network In Network学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50458190 作者:hjimce 一.相关理论 本篇 ...
- 深度学习(二十六)Network In Network学习笔记
深度学习(二十六)Network In Network学习笔记 Network In Network学习笔记 原文地址:http://blog.csdn.net/hjimce/article/deta ...
- C#可扩展编程之MEF学习笔记(五):MEF高级进阶
好久没有写博客了,今天抽空继续写MEF系列的文章.有园友提出这种系列的文章要做个目录,看起来方便,所以就抽空做了一个,放到每篇文章的最后. 前面四篇讲了MEF的基础知识,学完了前四篇,MEF中比较常用 ...
- (转)Qt Model/View 学习笔记 (五)——View 类
Qt Model/View 学习笔记 (五) View 类 概念 在model/view架构中,view从model中获得数据项然后显示给用户.数据显示的方式不必与model提供的表示方式相同,可以与 ...
- java之jvm学习笔记五(实践写自己的类装载器)
java之jvm学习笔记五(实践写自己的类装载器) 课程源码:http://download.csdn.net/detail/yfqnihao/4866501 前面第三和第四节我们一直在强调一句话,类 ...
随机推荐
- Elasticsearch、Kibana Windows下环境搭建
Elasticsearch 簡介 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是 ...
- Winform打包安装程序覆盖安装的实现
1.修改项目程序集版本号. 2.设置Version,使当前版本号大于前一个版本号. 3.RemovePreviousVersions属性设置为true. 以上三步后,生成安装程序即可实现覆盖安装. P ...
- C# 泛型实现Table与实体的相互转换
public class ModelHandler<T> where T : new() { /// <summary> /// Table转换成实体 /// </sum ...
- 使用客户端软件向服务端php程序发送post数据,php接受三种方法
方法一:$_POST; 方法二:$GLOBALS['HTTP_RAW_POST_DATA'],需要在php.ini开启 always_populate_raw_post_data = On: 方法三: ...
- 2017 NAIPC A:Pieces of Parentheses
my team solve the problem in the contest with similar ideathis is a more deep analysis The main idea ...
- 【文文殿下】【CF724C】Ray Tracing (中国剩余定理)
题解 我们考虑将棋盘扩大一倍,这样相当于取膜.然后,我们只要对x,y,的位置分类讨论,做四次crt就行.具体细节看文文代码. #include<cstdio> #include<al ...
- jzoj5347
tj:80pts:維護f[i][j]表示當前第i個方塊必須選,且選了j個的最優解,設w[i]為第i個方塊長度 則可以枚舉上次選了第k個方塊,則f[i][j]=max{f[k][j-1]+w[i]*(i ...
- 《JAVA与模式》之模板方法模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述模板方法(Template Method)模式的: 模板方法模式是类的行为模式.准备一个抽象类,将部分逻辑以具体方法以及具体构造函数的形式 ...
- Matlab 基础
命令行(Command Line) 1. help 格式:help 命令 2. cd 配合 Tab 使用 pwd: print current working directory,打印当前工作路径 ...
- Machine learning 第8周编程作业 K-means and PCA
1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...