Bellman-Ford算法

Bellman-Ford是一种容易理解的单源最短路径算法, Bellman-Ford算法需要两个数组进行辅助:

  • dis[i]: 存储顶点i到源点已知最短路径
  • path[i]: 存储顶点i到源点已知最短路径上, i的前一个顶点.

若图有n个顶点, 则图中最长简单路径长度不超过n-1, 因此Ford算法进行n-1次迭代确保获得最短路径.

Ford算法的每次迭代遍历所有边, 并对边进行松弛(relax)操作. 对边e进行松弛是指: 若从源点通过e.start到达e.stop的路径长小于已知最短路径, 则更新已知最短路径.

为了便于描述, 本文采用python实现算法. 首先实现两个工具函数:

INF = 1e6

def make_mat(m, n, fill=None):
mat = []
for i in range(m):
mat.append([fill] * n)
return mat def get_edges(graph):
n = len(graph)
edges = []
for i in range(n):
for j in range(n):
if graph[i][j] != 0:
edges.append((i, j, graph[i][j]))
return edges

make_mat用于初始化二维数组, get_edges用于将图由邻接矩阵表示变换为边的列表.

接下来就可以实现Bellman-Ford算法了:

def ford(graph, v0):
n = len(graph)
edges = get_edges(graph)
dis = [INF] * n
dis[v0] = 0
path = [0] * n for k in range(n-1):
for edge in edges:
# relax
if dis[edge[0]] + edge[2] < dis[edge[1]]:
dis[edge[1]] = dis[edge[0]] + edge[2]
path[edge[1]] = edge[0]
return dis, path

初始化后执行迭代和松弛操作, 非常简单.

由path[i]获得最短路径的前驱顶点, 逐次迭代得到从顶点i到源点的最短路径. 倒序即可得源点到i的最短路径.

def show(path, start, stop):
i = stop
tmp = [stop]
while i != start:
i = path[i]
tmp.append(i)
return list(reversed(tmp))

Ford算法允许路径的权值为负, 但是若路径中存在总权值为负的环的话, 每次经过该环最短路径长就会减少. 因此, 图中的部分点不存在最短路径(最短路径长为负无穷).

若路径中不存在负环, 则进行n-1次迭代后不存在可以进行松弛的边. 因此再遍历一次边, 若存在可松弛的边说明图中存在负环.

这样改进得到可以检测负环的Ford算法:

def ford(graph, v0):
n = len(graph)
edges = get_edges(graph)
dis = [INF] * n
dis[v0] = 0
path = [0] * n for k in range(n-1):
for edge in edges:
# relax
if dis[edge[0]] + edge[2] < dis[edge[1]]:
dis[edge[1]] = dis[edge[0]] + edge[2]
path[edge[1]] = edge[0] # check negative loop
flag = False
for edge in edges:
# try to relax
if dis[edge[0]] + edge[2] < dis[edge[1]]:
flag = True
break
if flag:
return False
return dis, path

Dijkstra算法

Dijkstra算法是一种贪心算法, 但可以保证求得全局最优解. Dijkstra算法需要和Ford算法同样的两个辅助数组:

  • dis[i]: 存储顶点i到源点已知最短路径
  • path[i]: 存储顶点i到源点已知最短路径上, i的前一个顶点.

Dijkstra算法的核心仍然是松弛操作, 但是选择松弛的边的方法不同. Dijkstra算法使用一个小顶堆存储所有未被访问过的边, 然后每次选择其中最小的进行松弛.

def dijkstra(graph, v0):
n = len(graph)
dis = [INF] * n
dis[v0] = 0
path = [0] * n unvisited = get_edges(graph)
heapq.heapify(unvisited) while len(unvisited):
u = heapq.heappop(unvisited)[1]
for v in range(len(graph[u])):
w = graph[u][v]
if dis[u] + w < dis[v]:
dis[v] = dis[u] + w
path[v] = u return dis, path

Floyd

floyd算法是采用动态规划思想的多源最短路径算法. 它同样需要两个辅助数组, 但作为多源最短路径算法, 其结构不同:

  • dis[i][j]: 保存从顶点i到顶点j的已知最短路径, 初始化为直接连接
  • path[i][j]: 保存从顶点i到顶点j的已知最短路径上下一个顶点, 初始化为j
def floyd(graph):
# init
m = len(graph)
dis = make_mat(m, m, fill=0)
path = make_mat(m, m, fill=0)
for i in range(m):
for j in range(m):
dis[i][j] = graph[i][j]
path[i][j] = j for k in range(m):
for i in range(m):
for j in range(m):
# relax
if dis[i][k] + dis[k][j] < dis[i][j]:
dis[i][j] = dis[i][k] + dis[k][j]
path[i][j] = path[i][k] return dis, path

算法核心是遍历顶点k, i, j. 若从顶点i经过顶点k到达顶点j的路径, 比已知从i到j的最短路径短, 则更新已知最短路径.

求最短路径的三种算法: Ford, Dijkstra和Floyd的更多相关文章

  1. 【2018寒假集训Day 7】【最短路径】三种算法的模板

    Luogu单源最短路径模版题 dijkstra #include<cstdio> #include<vector> using namespace std; const int ...

  2. c语言求回文数的三种算法的描述

    c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,8 ...

  3. (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍

    这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...

  4. 最短路问题的三种算法&模板

    最短路算法&模板 最短路问题是图论的基础问题.本篇随笔就图论中最短路问题进行剖析,讲解常用的三种最短路算法:Floyd算法.Dijkstra算法及SPFA算法,并给出三种算法的模板.流畅阅读本 ...

  5. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  6. Java利用DES/3DES/AES这三种算法分别实现对称加密

    转载地址:http://blog.csdn.net/smartbetter/article/details/54017759 有两句话是这么说的: 1)算法和数据结构就是编程的一个重要部分,你若失掉了 ...

  7. 内存分配---FF、BF、WF三种算法

    动态分区分配是根据进程的实际需要,动态的为之分配内存空间.而在实现可变分区分配时,将涉及到分区分配中 所用的数据结构.分区分配算法和分区的分配与内存回收的过程. 分区分配中的数据结构:(1)描述空闲块 ...

  8. 图文实例解析,InnoDB 存储引擎中行锁的三种算法

    前文提到,对于 InnoDB 来说,随时都可以加锁(关于加锁的 SQL 语句这里就不说了,忘记的小伙伴可以翻一下上篇文章),但是并非随时都可以解锁.具体来说,InnoDB 采用的是两阶段锁定协议(tw ...

  9. 求最短路的三种方法:dijkstra,spfa,floyd

    dijkstra是一种单源最短路算法.在没有负权值的图上,vi..vj..vk是vi到vk最短路的话,一定要走vi到vj的最短路.所以每次取出到起点距离最小的点,从该点出发更新邻接的点的距离,如果更新 ...

随机推荐

  1. Miniprofiler在swagger、vue、angular中的使用

     本篇分为以下几个部分: 1.Swagger的简单应用 2.Miniprofier的后台配置 3.跨域配置 4.在angular中显示Miniprofier 5.在vue中显示Miniprofier ...

  2. 【NumberValidators】增值税发票代码验证

    同大陆身份证验证一样,该部分是按照国家增值税发票代码的定制规则,进行发票代码验证,如果需要查验发票信息是否正确,应该通过第三方接口(大约一毛钱查验一次),或者直接上国家税务总局全国增值税发票查验平台进 ...

  3. 记录.NET Core部署到Linux之.NET Core环境搭建(1)

    1.在安装.NET之前,您需要注册Microsoft密钥.注册产品存储库和安装所需的依赖项. 启动我们的虚拟机,输入以下命令: sudo rpm -Uvh https://packages.micro ...

  4. Winform打包安装程序覆盖安装的实现

    1.修改项目程序集版本号. 2.设置Version,使当前版本号大于前一个版本号. 3.RemovePreviousVersions属性设置为true. 以上三步后,生成安装程序即可实现覆盖安装. P ...

  5. Backbone学习笔记 - View篇

    Backbone是一种Web端的MVC框架,这里纪录学习Model,View和Collection的笔记. 1 View initialize构造函数 Backbone.View 与jQuery库紧密 ...

  6. DI spring.net简单使用

    IOC或DI  spring.net简单使用 一.spring.net是什么? Spring 框架本是 Java 平台上一个应用非常多的.开源的框架.虽然语言是固定的,但是好的方法应该是通用的,于是 ...

  7. Spring 开发第一步(二)

    今天继续学习<Spring in action 3rd>并运行书中的例子,到了第4章aop,是加入一个作为切面的Audience类,将Performer的perform()方法作为切点来进 ...

  8. 用0x077CB531计算末尾0的个数

    http://www.matrix67.com/blog/archives/3985 unsigned int v;  // find the number of trailing zeros in ...

  9. JavaScript基础事件(6)

    day53 参考:https://www.cnblogs.com/liwenzhou/p/8011504.html#autoid-2-3-8 事件 HTML 4.0 的新特性之一是有能力使 HTML ...

  10. 萝卜保卫战3内购破解+Toast窗口增加(Love版)

    涉及到一些不同的破解的方法,以及不同的破解思路,还有一些重要权限的删除等. 作者:HAI_ 这次目标是经常玩的萝卜保卫战,不知不觉,已经更新到3了.详细分析请参考https://bbs.ichunqi ...