关于MR的工作原理不做过多叙述,本文将对MapReduce的实例WordCount(单词计数程序)做实践,从而理解MapReduce的工作机制。

WordCount:

  1.应用场景,在大量文件中存储了单词,单词之间用空格分隔

  2.类似场景:搜索引擎中,统计最流行的N个搜索词,统计搜索词频率,帮助优化搜索词提示。

  3.采用MapReduce执行过程如图

  

     3.1MapReduce将作业的整个运行过程分为两个阶段

        3.1.1Map阶段和Reduce阶段

            Map阶段由一定数量的Map Task组成

            输入数据格式解析:InputFormat

            输入数据处理:Mapper

            数据分组:Partitioner

        3.1.2Reduce阶段由一定数量的Reduce Task组成

            数据远程拷贝

            数据按照key排序

            数据处理:Reducer

            数据输出格式:OutputFormat

  4.介绍代码结构

  4.1 pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>hadoop</groupId>
<artifactId>hadoop.mapreduce</artifactId>
<version>1.0-SNAPSHOT</version> <repositories>
<repository>
<id>aliyun</id>
<url>http://maven.aliyun.com/nexus/content/groups/public/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-yarn-client</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.7.3</version>
</dependency>
</dependencies> <build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.3</version>
<configuration>
<classifier>dist</classifier>
<appendAssemblyId>true</appendAssemblyId>
<descriptorRefs>
<descriptor>jar-with-dependencies</descriptor>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build> </project>

  4.2 WordCount.java

package hadoop.mapreduce;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; import java.io.IOException; public class WordCount { public static class WordCountMap
extends Mapper<Object, Text, Text, IntWritable> { public void map(Object key,Text value, Context context) throws IOException, InterruptedException {
//在此处写map代码
String[] lines = value.toString().split(" ");
for (String word : lines) {
context.write(new Text(word), new IntWritable(1));
}
}
} public static class WordCountReducer
extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//在此处写reduce代码
int count=0;
for (IntWritable cn : values) {
count=count+cn.get();
}
context.write(key, new IntWritable(count));
}
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
//设置输入路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
//设置输出路径
FileOutputFormat.setOutputPath(job, new Path(args[1])); //设置实现map函数的类
job.setMapperClass(WordCountMap.class);
//设置实现reduce函数的类
job.setReducerClass(WordCountReducer.class); //设置map阶段产生的key和value的类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //设置reduce阶段产生的key和value的类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); //提交job
job.waitForCompletion(true); for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,new Path(otherArgs[otherArgs.length - 1])); System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

  4.3 data目录下文件内容:

    to.txt

hadoop spark hive hbase hive

   t1.txt

hive spark mapReduce spark

    t2.txt

sqoop spark hadoop

5. 数据准备

  5.1 maven 打jar包为hadoop.mapreduce-1.0-SNAPSHOT.jar,传入master服务器上

    

  5.2 将需要计算的数据文件放入datajar/in (临时目录无所谓在哪里)

   

  5.3 启动hadoop ,关于hadoop安装可参考我写的文章 大数据系列之Hadoop分布式集群部署

    将datajar/in文件传至hdfs 上

hadoop fs -put in /in  
#查看文件
hadoop fs -ls -R /in

 5.4 执行jar

  两种命令方式

#第一种:hadoop jar
hadoop jar hadoop.mapreduce-1.0-SNAPSHOT.jar hadoop.mapreduce.WordCount /in/* /out #OR
#第二种:yarn jar
yarn jar hadoop.mapreduce-1.0-SNAPSHOT.jar hadoop.mapreduce.WordCount /in/* /yarnOut

  5.5.执行后输出内容分别如图

hadoop jar ...结果

yarn jar ... 结果

 6.查看结果内容

#查看hadoop ja 执行后输出结果目录
hadoop fs -ls -R /out #查看yarn jar 执行后输出结果目录
hadoop fs -ls -R /yarnOut

  目录说明:目录中_SUCCESS 是日志文件,part-r-00000是计算结果文件

  查看计算结果

#查看out/part-r-00000文件
hadoop fs -text /out/part-r-00000 #查看yarnOut/part-r-00000文件
hadoop fs -text /yarnOut/part-r-00000

完~~~,Java代码内容已上传至GitHub https://github.com/fzmeng/MapReduceDemo

大数据系列之分布式计算批处理引擎MapReduce实践的更多相关文章

  1. 大数据系列之分布式计算批处理引擎MapReduce实践-排序

    清明刚过,该来学习点新的知识点了. 上次说到关于MapReduce对于文本中词频的统计使用WordCount.如果还有同学不熟悉的可以参考博文大数据系列之分布式计算批处理引擎MapReduce实践. ...

  2. 大数据系列4:Yarn以及MapReduce 2

    系列文章: 大数据系列:一文初识Hdfs 大数据系列2:Hdfs的读写操作 大数据谢列3:Hdfs的HA实现 通过前文,我们对Hdfs的已经有了一定的了解,本文将继续之前的内容,介绍Yarn与Yarn ...

  3. 大数据系列之数据仓库Hive命令使用及JDBC连接

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  4. 大数据系列之并行计算引擎Spark介绍

    相关博文:大数据系列之并行计算引擎Spark部署及应用 Spark: Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. Spark是UC Berkeley AMP lab ( ...

  5. 大数据系列之并行计算引擎Spark部署及应用

    相关博文: 大数据系列之并行计算引擎Spark介绍 之前介绍过关于Spark的程序运行模式有三种: 1.Local模式: 2.standalone(独立模式) 3.Yarn/mesos模式 本文将介绍 ...

  6. 批处理引擎MapReduce编程模型

    批处理引擎MapReduce编程模型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce是一个经典的分布式批处理计算引擎,被广泛应用于搜索引擎索引构建,大规模数据处理 ...

  7. 批处理引擎MapReduce内部原理

    批处理引擎MapReduce内部原理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce作业生命周期 MapReduce作业作为一种分布式应用程序,可直接运行在H ...

  8. 大数据系列之数据仓库Hive原理

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  9. 批处理引擎MapReduce应用案例

    批处理引擎MapReduce应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce能够解决的问题有一个共同特点:任务可以被分解为多个子问题,且这些子问题相对独立 ...

随机推荐

  1. 深入理解HashMap(原理,查找,扩容)

    面试的时候闻到了Hashmap的扩容机制,之前只看到了Hasmap的实现机制,补一下基础知识,讲的非常好 原文链接: http://www.iteye.com/topic/539465 Hashmap ...

  2. 编辑器配置 vscode / Atom / Sublime Text

    vscode配置 https://code.visualstudio.com/docs/languages/cpp https://www.zhihu.com/question/30315894/an ...

  3. 【codeforces 553E】 Kyoya and Train

    http://codeforces.com/problemset/problem/553/E (题目链接) 艹尼玛,CF还卡劳资常数w(゚Д゚)w!!系统complex被卡TLE了T_T,劳资写了一天 ...

  4. Android获取长按按键响应

    Android获取长按按键响应http://www.2cto.com/kf/201312/261719.html Android下Listview的onItemClick以及onItemLongCli ...

  5. 【枚举&数据结构】【P2484】 [SDOI2011]打地鼠

    Description 给定一个网格,每个格子上有一个数字.一次操作可以将 \(r~\times~c\) 的一块矩形的数字减去 \(1\).必须保证这个矩形中的数全部为正.每次操作的 \(r\) 和 ...

  6. Docker 安装tensorflow

    安装DOCKER 1. https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/ nstall from a packag ...

  7. pg数据库杀掉连接

    遇到异常连接时,需要将对应连接杀掉,可能是连接占用了过多CPU或是IO,影响了业务,或是时间过长的空闲事务. pg对于杀掉连接提供了专门的命令,一般情况下使用pg_cancel_backend就可以, ...

  8. SpringBoot(十三):springboot 小技巧

    原文出处: 纯洁的微笑 一些springboot小技巧.小知识点. 初始化数据 我们在做测试的时候经常需要初始化导入一些数据,如何来处理呢?会有两种选择,一种是使用Jpa,另外一种是Spring JD ...

  9. Java HashMap源码分析

    貌似HashMap跟ConcurrentHashMap是面试经常考的东西,抽空来简单分析下它的源码 构造函数 /** * Constructs an empty <tt>HashMap&l ...

  10. centos7.2 rabbitmq3.6.2源码部署

    1.安装所有依赖包yum install -y gcc ncurses ncurses-base ncurses-devel ncurses-libs ncurses-static ncurses-t ...