luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论

每个位置的瓶子中的每个石子是一个独立的游戏
只要计算出他们的\(sg\)值即可
至于方案数,反正不多\(n^3\)暴力枚举即可
反正怎么暴力都能过啊
复杂度\(O(Tn^3)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
int n, sg[25], mex[105];
inline void get_sg() {
sg[n] = 0;
drep(i, n - 1, 1) {
memset(mex, 0, sizeof(mex));
rep(j, i + 1, n) rep(k, j, n)
mex[sg[j] ^ sg[k]] = 1;
rep(j, 0, 100)
if(!mex[j]) { sg[i] = j; break; }
}
}
int main() {
int T = read();
while(T --) {
n = read(); get_sg();
int SG = 0;
rep(i, 1, n) SG ^= (read() & 1) * sg[i];
if(!SG) {
printf("-1 -1 -1\n");
printf("0\n"); continue;
}
int ans = 0, flag = 0;
rep(i, 1, n) rep(j, i + 1, n) rep(k, j, n)
if((SG ^ sg[i] ^ sg[j] ^ sg[k]) == 0) {
if(!flag) { printf("%d %d %d\n", i - 1, j - 1, k - 1); flag = 1; }
ans ++;
}
printf("%d\n", ans);
}
return 0;
}
luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论的更多相关文章
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- 【BZOJ1188】分裂游戏(博弈论)
[BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...
- 【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏
因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦, ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
随机推荐
- 对于Json的认识
Json简介 1. JSON 是什么 JSON,全称是 JavaScript Object Notation,即 JavaScript 对象标记法. JSON 是一种轻量级(Light-Weigh ...
- spring-boot-CommandLineRunner
在项目服务启动完成后就去加载一些数据 @Component public class MyStartupRunner1 implements CommandLineRunner { @Override ...
- Python标准库笔记(7) — copy模块
copy-对象拷贝模块:提供了浅拷贝和深拷贝复制对象的功能, 分别对应模块中的两个函数 copy() 和 deepcopy(). 1.浅拷贝(Shallow Copies) copy() 创建的 浅拷 ...
- java 判断上传文件大小
/** * 判断文件大小 * * @param file * 文件 * @param size * 限制大小 * @param unit * 限制单位(B,K,M,G) * @return */ pu ...
- 众签demo
众签demo using System; using System.Collections.Generic; using System.Linq; using System.Text; using S ...
- MVVM模式View和ViewModel的通信
还需要些什么呢 在前面几篇博客中我们尝试去实现了MVVM中的数据绑定.命令绑定和事件绑定.貌似实现的差不多了.我最早尝试用MVVM去开发的时候也是这么想的,没有用第三方框架,甚至只是实现了数据绑定和命 ...
- Java事务管理之Spring+Hibernate
环境与版本 除了上一篇中的hibernate的相关lib 外 Java事务管理之Hibernate 还需要加入Spring的lib 包和如下的一些依赖包 org.aopallianceorg.aspe ...
- SQL Case when 的使用方法 (转)
Case具有两种格式.简单Case函数和Case搜索函数. --简单Case函数 CASE sex WHEN '1' THEN '男' WHEN '2' THEN '女' ELSE '其他' END ...
- Effective STL 学习笔记14: Use reserve to avoid unnecessary reallocations.
vector 和 string 容器在动态插入一个新的对象时,如果容器内空间不够,该容器会: 重新分配空间 通常的做法是分配当前 Capacity 大小两倍的空间. 将旧空间中的所有元素拷贝进新的空间 ...
- HBase入门笔记--读性能优化
一.前言 在生产环境使用HBase过程中,随着数据量的不断增加,查询HBase数据变得越来越慢,对于业务来说是不可用的,需要对读性能进行优化 二.问题定位 从hbase监控指标来看,发现FullGC次 ...