luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论

每个位置的瓶子中的每个石子是一个独立的游戏
只要计算出他们的\(sg\)值即可
至于方案数,反正不多\(n^3\)暴力枚举即可
反正怎么暴力都能过啊
复杂度\(O(Tn^3)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
int n, sg[25], mex[105];
inline void get_sg() {
sg[n] = 0;
drep(i, n - 1, 1) {
memset(mex, 0, sizeof(mex));
rep(j, i + 1, n) rep(k, j, n)
mex[sg[j] ^ sg[k]] = 1;
rep(j, 0, 100)
if(!mex[j]) { sg[i] = j; break; }
}
}
int main() {
int T = read();
while(T --) {
n = read(); get_sg();
int SG = 0;
rep(i, 1, n) SG ^= (read() & 1) * sg[i];
if(!SG) {
printf("-1 -1 -1\n");
printf("0\n"); continue;
}
int ans = 0, flag = 0;
rep(i, 1, n) rep(j, i + 1, n) rep(k, j, n)
if((SG ^ sg[i] ^ sg[j] ^ sg[k]) == 0) {
if(!flag) { printf("%d %d %d\n", i - 1, j - 1, k - 1); flag = 1; }
ans ++;
}
printf("%d\n", ans);
}
return 0;
}
luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论的更多相关文章
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- 【BZOJ1188】分裂游戏(博弈论)
[BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...
- 【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏
因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦, ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
随机推荐
- vue中使用cookie记住用户上次选择(本次例子中为下拉框)
最近工作中碰到一个需求,添加一条数据时,自动记住上次选择的下拉框的数据,刚开始觉得没思路,后来请教了项目组长,组长直接一句,这不很简单吧,直接用cookie,我:....... 好吧,都王的差不多了, ...
- ubuntu16.04 eclipse+pydev 配置
参考:http://blog.csdn.net/bluish_white/article/details/56509446,http://blog.csdn.net/qing101hua/articl ...
- PATH变量重复
命令: export PATH=$(echo $PATH | tr : "\n"| sort | uniq | tr "\n" :) Code: awk -F: ...
- PHP 中 int 和 integer 类型的区别
半夜整理东西,发现一个以前没留意到的小问题. function show($id) : int { return $id; } function show($id) : integer { retur ...
- Linux USB驱动框架分析 【转】
转自:http://blog.chinaunix.net/uid-11848011-id-96188.html 初次接触与OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结 ...
- aarch64_c1
CBFlib-0.9.5.15-3.fc26.aarch64.rpm 2017-02-06 06:55 393K fedora Mirroring Project CBFlib-devel-0.9.5 ...
- Python3 item系列
一.前言 #在python中一切皆对象 ''' 创建了一个dict实例-->dic就是dict的实例对象 我们通过dic['k1']可以得到k1所对应的值 那么我们自定义一个类,可不可以使用对象 ...
- 【轨迹动画css】不规则轨迹动画css教程,弹球,客服广告悬浮层都可以用
小demo如下,可更具自己需求修改: css @keyframes animX{ 0% {left: 0px;} 100% {left: 500px;} } @keyframes animY{ 0% ...
- js事件兼容处理
js封装事件处理函数,兼容ie,支持事件代理 var eventUtil = { bindEvent: function(el, type, target, callback, popgation) ...
- 洛谷P3119 草鉴定
这个题调了一天.. 传送门 读完题目之后我们不难想出这个题是个tarjan缩点问题,因为尽量多的经过草场,所以一号点所在的强连通分量里左右的点都是不需要在进行走逆向边,所能到达的. 然后问题就落在怎么 ...