luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论
每个位置的瓶子中的每个石子是一个独立的游戏
只要计算出他们的\(sg\)值即可
至于方案数,反正不多\(n^3\)暴力枚举即可
反正怎么暴力都能过啊
复杂度\(O(Tn^3)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
int n, sg[25], mex[105];
inline void get_sg() {
sg[n] = 0;
drep(i, n - 1, 1) {
memset(mex, 0, sizeof(mex));
rep(j, i + 1, n) rep(k, j, n)
mex[sg[j] ^ sg[k]] = 1;
rep(j, 0, 100)
if(!mex[j]) { sg[i] = j; break; }
}
}
int main() {
int T = read();
while(T --) {
n = read(); get_sg();
int SG = 0;
rep(i, 1, n) SG ^= (read() & 1) * sg[i];
if(!SG) {
printf("-1 -1 -1\n");
printf("0\n"); continue;
}
int ans = 0, flag = 0;
rep(i, 1, n) rep(j, i + 1, n) rep(k, j, n)
if((SG ^ sg[i] ^ sg[j] ^ sg[k]) == 0) {
if(!flag) { printf("%d %d %d\n", i - 1, j - 1, k - 1); flag = 1; }
ans ++;
}
printf("%d\n", ans);
}
return 0;
}
luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论的更多相关文章
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- 【BZOJ1188】分裂游戏(博弈论)
[BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...
- 【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏
因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦, ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
随机推荐
- Linux的基础优化-2
1.启动网卡 ifup eth0 2.SSH链接 ifconfig 查看IP后SSH终端连接3.更新源 最小化安装是没有wget工具的,必须先安装再修改源 yum install wget 备份原系统 ...
- 关于getsockname()/getpeername()函数第一次被调用得到0.0.0.0结果的说明
最近阅读UNIX网络编程第四章时,书本末尾介绍了两个函数getsockname()和getpeername(),可以用于获取服务器端和客户端的IP地址与端口,原本很简单的两个函数,过一眼即明白函数的用 ...
- scp加端口号
scp -P 21110 root@192.168.0.1:/home/abc.txt root@192.168.0.2:/root 注意: 参数-P 的位置一定要紧跟在scp命令后面 参数-P 指的 ...
- MySQL分页存储过程
CREATE PROCEDURE ProcPage(in tableName varchar(20),#表名 in showField varchar(100),#要显示的列名 in whereT ...
- 如何开启mysql5.5的客户端服务 命令行打开方法
MySQL分为两个部分,服务器端和客户端,只有服务器端的服务开启后,才可以通过客户端登录到MySQL数据库.这里介绍如何用命令行方式开启mysql的客户端服务. 在计算机上安装好mysql软件 我 ...
- linux bash shell之declare
一. #Set the right GC options based on the what we are runningdeclare -a server_cmds=("master&qu ...
- Python基础(2):__doc__、文档字符串docString、help()
OS:Windows 10家庭中文版,Python:3.6.4 Python中的 文档字符串(docString) 出现在 模块.函数.类 的第一行,用于对这些程序进行说明.它在执行的时候被忽略,但会 ...
- python基础--类的经典类vs新式类
经典类VS新式类区别 1)写法新式类class Person(object):#new style 经典类class Persion: #classical style 2)调用父类 新式写法用sup ...
- day04作业
1.for(初始化表达式:条件表达式:循环后的操作表达式){ 循环体: } class Test_Sum { public static void main(String[] args) { int ...
- ASP.NET中Literal,只增加纯粹的内容,不附加产生html代码
页面代码 <div style="float: right; color: #666; line-height: 30px; margin-right: 12px;" id= ...