题目描述

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

注:数据有加强(2018/4/25)

输入输出格式

输入格式:

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

输出格式:

所得的方案数

输入输出样例

输入样例#1:

3 2
输出样例#1:

16

Solution:

  本题状压dp水题。

  预处理单行合法的状态和所放国王数,定义$f[i][j][k]$表示前$i$行放了$j$个国王且最后一行状态为$k$时的方案数。

  那么转移就比较简单了,一层枚举阶段j(国王数),第二层枚举阶段i(行数),第三层枚举状态k(最后一行国王状态),第四层枚举决策p(转移后状态),判断合法后随便搞搞就好了。

代码:

/*Code by 520 -- 10.14*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,lim,w[<<N];
ll f[N][N*N*][<<N],ans;
bool sta[<<N]; int main(){
ios::sync_with_stdio();
cin>>n>>m,lim=(<<n)-;
For(i,,lim) {
sta[i]=(!(i&(i<<))&&!(i&(i>>)));
if(sta[i])
For(j,,n-) if(i&(<<j)) w[i]++;
}
f[][][]=;
For(p,,m) For(i,,n) For(j,,lim)
if(sta[j]) For(k,,lim)
if(sta[k]&&!(j&k)&&!((j<<)&k)&&!((j>>)&k))
f[i][p+w[j]][j]+=f[i-][p][k];
For(i,,lim) ans+=f[n][m][i];
cout<<ans;
return ;
}
 
 
 

P1896 [SCOI2005]互不侵犯的更多相关文章

  1. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  2. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  3. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  4. P1896 [SCOI2005] 互不侵犯 方法记录

    原题链接 [SCOI2005] 互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  5. 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  6. 洛谷 P1896 [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...

  7. P1896 [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...

  8. 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...

  9. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

随机推荐

  1. Spring学习(十六)----- Spring AOP实例(Pointcut(切点),Advisor)

    在上一个Spring AOP通知的例子,一个类的整个方法被自动拦截.但在大多数情况下,可能只需要一种方式来拦截一个或两个方法,这就是为什么引入'切入点'的原因.它允许你通过它的方法名来拦截方法.另外, ...

  2. centos 7 lsof 安装使用

    lsof(list open files)是一个列出当前系统打开文件的工具.在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件.所以,lsof的功 ...

  3. Linux速成(一)

    全部转载自http://www.runoob.com/linux/linux-intro.html 一.Linux 简介 Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和 ...

  4. 文件的上传和下载--SpringMVC

    文件的上传和下载是项目开发中最常用的功能,例如图片的上传和下载.邮件附件的上传和下载等. 接下来,将对Spring MVC环境中文件的上传和下载进行详细的讲解. 一.文件上传 多数文件上传都是通过表单 ...

  5. python循环综合运用

    循环很重要,计算机很蠢,唯一的优势就是按照指令不停的执行,所以决定在说一下. break语句,用在循环体中,迫使循环立即终止,即跳出所在循环体,继续执行循环体后面的语句. sum=0 i=1 whil ...

  6. fetch err : "Body not allowed for GET or HEAD requests"

    在使用 fetch 的时候 报了  "Body not allowed for GET or HEAD requests" 这个错. 代码如下: 一番google , 找到答案了. ...

  7. servlet 和 threadlocal 与 web容器(理解threadlocal)

    同步机制采用了“以时间换空间”的方式,提供一份变量,让不同的线程排队访问.而ThreadLocal采用了“以空间换时间”的方式,为每一个线程都提供了一份变量的副本,从而实现同时访问而互不影响. htt ...

  8. 团队博客作业Week5 --- 团队贡献分--分配规则

    团队会议 时间:公元2015年10月26日22时3分20秒 地点:宿舍楼716房间 与会人员:陈谋,李剑锋,卢惠民,刘夕霆,仉伯龙,潘成鼎. 会议内容:今天的组会主要讨论的是项目团队贡献分的计算方式, ...

  9. 《UML大战需求分析》-读后感三

    用例图是用来描述什么角色通过某某系统能做什么的图,用例图关注的是系统的外在表示想爱你.系统与人的交互系统与其他系统的交互,小人执行者就是角色,角色 是对系统使用者的抽象,一个角色可以代表多个具体的人而 ...

  10. validating & update ctabfolder css

    总是查错 结果把validating全部都反选,然后老是update ctabfolder css update ctabfolder css has encountered a problem An ...