BZOJ5125 小Q的书架(决策单调性+动态规划+分治+树状数组)
设f[i][j]为前i个划成j段的最小代价,枚举上个划分点转移。容易想到这个dp有决策单调性,感性证明一下比较显然。如果用单调栈维护决策就不太能快速的求出逆序对个数了,改为使用分治,移动端点时树状数组维护即可,类似莫队的每次都在原有基础上更新。注意更新时先加再减。感觉复杂度非常玄学丝毫不能看出为啥只需要更新nlog次?
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 40010
#define M 11
#define inf 1600000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],f[M][N],tree[N],l,r,cur;
void add(int k,int x){while (k<=n) tree[k]+=x,k+=k&-k;}
int query(int k){int s=;while (k) s+=tree[k],k-=k&-k;return s;}
void update(int L,int R)
{
while (r<R) cur+=r-l+-query(a[r+]),add(a[++r],);
while (l>L) cur+=query(a[l-]),add(a[--l],);
while (r>R) add(a[r--],-),cur-=r-l+-query(a[r+]);
while (l<L) add(a[l++],-),cur-=query(a[l-]);
}
void solve(int k,int x,int y,int l,int r)
{
if (l>r) return;
int mid=l+r>>,id=min(mid-,y);f[k][mid]=inf;
for (int i=min(mid-,y);i>=x;i--)
{
update(i+,mid);
if (f[k-][i]+cur<=f[k][mid]) f[k][mid]=f[k-][i]+cur,id=i;
}
solve(k,x,id,l,mid-);
solve(k,id,y,mid+,r);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5125.in","r",stdin);
freopen("bzoj5125.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();l=,r=;
for (int i=;i<=n;i++) a[i]=read();
f[][]=;for (int i=;i<=n;i++) f[][i]=inf;
for (int j=;j<=m;j++) solve(j,,n-,,n);
cout<<f[m][n];
return ;
}
BZOJ5125 小Q的书架(决策单调性+动态规划+分治+树状数组)的更多相关文章
- [BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)
显然有决策单调性,但由于逆序对不容易计算,考虑分治DP. solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y].暴力计算出(l+r)/2的 ...
- 【BZOJ2727】双十字(动态规划,树状数组)
[BZOJ2727]双十字(动态规划,树状数组) 题面 BZOJ 洛谷 题解 我们去年暑假的时候考试考过. 我当时写了个大暴力混了\(70\)分.... 大暴力是这么写的: 预处理每个位置向左右/上/ ...
- HDU 4247 Pinball Game 3D(cdq 分治+树状数组+动态规划)
Pinball Game 3D Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 求序列A中每个数的左边比它小的数的个数(树状数组)
给定一个有N个正整数的序列A(N<=10^5,A[i]<=10^5),对序列中的每一个数,求出序列中它左边比它小的数的个数. 思路:树状数组的经典应用(裸题) #include <i ...
- BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】
小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去.将所有书都放到 ...
- 【BZOJ 5125】小Q的书架
Problem Description 小 \(Q\) 有 \(n\) 本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小 \(Q\) 希望把这一排书分成恰好 \(k\) 段,使 ...
- 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)
http://www.lydsy.com/JudgeOnline/problem.php?id=1901 首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊. ...
- [ZJOI2006]书架(树状数组水过)
这道题显然平衡树,splay,treap什么的随便切 然而我不想打,决定水过这道题 把空间开3倍,树状数组维护它前面的树的个数,开个id数组记录位置 找一个数排名直接二分加求前缀和,log^2的搞一搞 ...
- ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解
题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...
随机推荐
- 从零搭建HBase集群
本文从零开始搭建大数据集群,涉及Linux集群安装搭建,Hadoop集群搭建,HBase集群搭建,Java接口封装,对接Java的C#类库封装 Linux集群搭建与配置 Hadoop集群搭建与配置 H ...
- Python里的类和对象简介
---恢复内容开始--- Python里的类 对象=属性+方法: 对象的属性主要是指主要的特征和参量,而方法主要是指函数: 类是一个具有一定特征和方法的集合,而对象是类的一个:类和对象的关系就如同模 ...
- NO--16 vue之父子组件传值
先创建项目并运行 vue init webpack-simple templatecd templatenpm inpm run dev 一.子组件访问父组件的数据 方式一 :子组件直接访问父组件的数 ...
- [egret]白鹭引擎打包安卓包体积太大减小
萌新第一次用egret打安卓包,发现裸包22M+,吃惊到吃手手. 上网搜查无果. 可能原因是egret优化过一波打包,变得更便利了,网上对新版本打包比较少讨论. 解决方法: egret-android ...
- Netty源码分析第1章(Netty启动流程)---->第1节: 服务端初始化
Netty源码分析第一章: Server启动流程 概述: 本章主要讲解server启动的关键步骤, 读者只需要了解server启动的大概逻辑, 知道关键的步骤在哪个类执行即可, 并不需要了解每一步的 ...
- UVa 10055
说一下犯错的地方: 1)没有注意数据范围,题目中是The input numbers are not greater than balabalabala. 而这个32位的int类型恰好装不下2^32, ...
- Linux虚拟机安装教程
必备组件: vmware(程序主题) 链接:https://pan.baidu.com/s/14OplOGOQTVAnf0iDqgDhDQ 提取码:jape centos(Linux系统) 链接:ht ...
- Python List Comprehension
(一)使用List Comprehension的好处 在了解Python的List Comprehension之前,我们习惯使用for循环创建列表,比如下面的例子: numbers = range(1 ...
- 图解Raid5数据存储的原理
- 第39次Scrum会议(12/5)【欢迎来怼】
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/12/5 11:35~11:57,总计22min.地点:东北师 ...