Smallest Minimum Cut

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2281    Accepted Submission(s): 913

Problem Description
Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition of nodes set V into two parts such that s and t belong to different parts. The cut set is the subset of E with all edges connecting nodes in different parts. A minimum cut is the one whose cut set has the minimum summation of capacities. The size of a cut is the number of edges in the cut set. Please calculate the smallest size of all minimum cuts.
 
Input
The input contains several test cases and the first line is the total number of cases T (1≤T≤300).
Each case describes a network G, and the first line contains two integers n (2≤n≤200) and m (0≤m≤1000) indicating the sizes of nodes and edges. All nodes in the network are labelled from 1 to n.
The second line contains two different integers s and t (1≤s,t≤n) corresponding to the source and sink.
Each of the next m lines contains three integers u,v and w (1≤w≤255) describing a directed edge from node u to v with capacity w.
 
Output
For each test case, output the smallest size of all minimum cuts in a line.
 
Sample Input
2
4 5
1 4
1 2 3
1 3 1
2 3 1
2 4 1
3 4 2
4 5
1 4
1 2 3
1 3 1
2 3 1
2 4 1
3 4 3
 
Sample Output
2
3
 
就是求最小割的边的集合
 
最小割的边就等于满流的边
1、将每条边的权值改为w*(m+1)+1, 最后求的最大流除以(m+1)就是原图的最大流,模上(m+1)就是最小割的边
2、求得最大流之后,将所有的满流的边权设为1,不满流的边权设为INF,然后跑一边最大流就是最小割的边
 
 
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int head[maxn], cnt;
int d[maxn], vis[maxn], cur[maxn];
int s, t;
struct node
{
int u, v, c, next;
}Node[maxn<<]; void add_(int u, int v, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c);
add_(v, u, );
} void init()
{
mem(head, -);
cnt = ;
} bool bfs()
{
queue<int> Q;
mem(d, );
Q.push(s);
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(!d[e.v] && e.c > )
{
d[e.v] = d[e.u] + ;
Q.push(e.v);
if(e.v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = , V;
if(u==t || cap == )
return cap;
for(int &i=cur[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(d[e.v] == d[e.u] + && e.c > )
{
int V = dfs(e.v, min(cap, e.c));
Node[i].c -= V;
Node[i^].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int dinic(int u)
{
int ans = ;
while(bfs())
{
memcpy(cur, head, sizeof(head));
ans += dfs(u, INF);
}
return ans;
} int main()
{
int T, n, m;
rd(T);
while(T--)
{
int u, v, c;
init();
rd(n); rd(m);
rd(s), rd(t);
rep(i, , m)
{
rd(u), rd(v), rd(c);
add(u, v, c*(m+) + );
} int res = dinic(s);
cout<< res % (m+) <<endl; } return ;
}

Smallest Minimum Cut HDU - 6214(最小割集)的更多相关文章

  1. HDU 6214 Smallest Minimum Cut(最少边最小割)

    Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...

  2. HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】

    Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...

  3. HDU 6214.Smallest Minimum Cut 最少边数最小割

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  4. hdu 6214 Smallest Minimum Cut[最大流]

    hdu 6214 Smallest Minimum Cut[最大流] 题意:求最小割中最少的边数. 题解:对边权乘个比边大点的数比如300,再加1 ,最后,最大流对300取余就是边数啦.. #incl ...

  5. HDU - 6214:Smallest Minimum Cut(最小割边最小割)

    Consider a network G=(V,E) G=(V,E) with source s s and sink t t . An s-t cut is a partition of nodes ...

  6. HDU-6214 Smallest Minimum Cut(最少边最小割)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 Problem Description Consider a network G=(V,E) w ...

  7. HDU 6214 最小割边

    双倍经验题:HDU 6214,3987 求最小割的最小边. 方案一: 首先跑最大流,这个时候割上都满载了,于是将满载的边 cap = 1,其他 inf ,再跑最大流,这个时候限定这个网络的关键边就是那 ...

  8. HDU 6214 Smallest Minimum Cut 最小割,权值编码

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 题意:求边数最小的割. 解法: 建边的时候每条边权 w = w * (E + 1) + 1; 这 ...

  9. HDU 6214 Smallest Minimum Cut (最小割且边数最少)

    题意:给定上一个有向图,求 s - t 的最小割且边数最少. 析:设边的容量是w,边数为m,只要把每边打容量变成 w * (m+1) + 1,然后跑一个最大流,最大流%(m+1),就是答案. 代码如下 ...

随机推荐

  1. PHP 用户密码加密函数password_hash

    传统的用户名和密码都采用加盐的方式存储加密信息,盐值也需要存储. 自PHP5.5.0之后,新增加了密码散列算法函数(password_hash),password_hash() 使用足够强度的单向散列 ...

  2. NO17--vue父子组件间单向数据流的解决办法

    在上一篇中讲解了父子组件之间是如何传值的,如果子组件需要改变传过来的数据供自己使用,或者想在子组件中改变传过来的数据并同步到父组件,那么直接改肯定是不行的,如果你这么做了,Vue 会在控制台给出警告. ...

  3. Tree - AdaBoost with sklearn source code

    In the previous post we addressed some issue of decision tree, including instability, lack of smooth ...

  4. C++判断回文

    判断一个字符串是否为回文,如“goddog”. 代码: #include <iostream> #include <string> #include <stdio.h&g ...

  5. Python交互数据库(Mysql | Mongodb | Redis)

    数据库 Mysql Mysql MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,后来被Sun公司收购,Sun公司后来又被Oracle公司收购,目前属于Oracle旗下产品 MyS ...

  6. PHP 抽象类和接口区别

    php中抽象类和接口的区别 1) 概念 面向对象的三大概念:封装,继承,多态 把属性和方法封装起来就是类.      一个类的属性和方法被另外的类复制就是继承,PHP里面的任何类都可以被继承,被继承的 ...

  7. Alpha版本BUG BASH

    在本次软件开发的第一轮迭代中,我们团队遇到了很多问题.首先是和学长联系不上导致拿到项目前一版本的代码的时间延后了一个星期. 拿到代码后发现由于安装环境的问题代码无法移植.在这一阶段我们就耗费了大量的时 ...

  8. Daily Scrum 11.18

    今日完成任务: 1.在提问问题的时候为问题创建索引 2.解决了修改个人资料后刷新没有更新的问题 3.初步加入了采纳功能(没完善UI设计) 遇到困难:创建索引之后,跳转到主页,需要重新登录,找了半天不知 ...

  9. 08慕课网《进击Node.js基础(一)》事件events

    引用events模块中的EventEmitter 事件的监听和发射 相同的事件发射数量有限,可以通过setMaxListeners设置峰值 var EventEmitter = require('ev ...

  10. 《Spring2之站立会议1》

    <Spring2之站立会议1> 昨天,查找了关于建立起服务器和客户端两端的连接的资料,并学习了如何写把两者建立起来的代码: 今天,模仿着相关资料,分别写了客户端和服务器两端的代码: 遇到的 ...