传送门

一道经典的斜率优化dp。

推式子ing。。。

令f[i]表示装前i个玩具的最优代价。

然后用老套路。

我们只考虑把第j+1" role="presentation" style="position: relative;">j+1j+1~i" role="presentation" style="position: relative;">ii个玩具分成一组的情况,之前的1~j个自行按最优情况分组。

显然有f[i]=f[j]+(sum[i]−sum[j]+L)2" role="presentation" style="position: relative;">f[i]=f[j]+(sum[i]−sum[j]+L)2f[i]=f[j]+(sum[i]−sum[j]+L)2

那么对于决策j,k。

谁对i的贡献更优呢?

我们假设j更优。

显然有

f[i]=f[j]+(sum[i]−sum[j]+L)2&lt;f[i]=f[k]+(sum[i]−sum[k]+L)2" role="presentation" style="position: relative;">f[i]=f[j]+(sum[i]−sum[j]+L)2<f[i]=f[k]+(sum[i]−sum[k]+L)2f[i]=f[j]+(sum[i]−sum[j]+L)2<f[i]=f[k]+(sum[i]−sum[k]+L)2

=>f[j]+sum[j]2−2sum[i]∗sum[j]&lt;f[k]+sum[k]2−2sum[i]∗sum[k]" role="presentation" style="position: relative;">f[j]+sum[j]2−2sum[i]∗sum[j]<f[k]+sum[k]2−2sum[i]∗sum[k]f[j]+sum[j]2−2sum[i]∗sum[j]<f[k]+sum[k]2−2sum[i]∗sum[k]

设T[t]=f[t]+sum[t]2" role="presentation" style="position: relative;">T[t]=f[t]+sum[t]2T[t]=f[t]+sum[t]2

=>(T[j]−T[k])/(sum[j]−sum[k])&lt;2sum[i]" role="presentation" style="position: relative;">(T[j]−T[k])/(sum[j]−sum[k])<2sum[i](T[j]−T[k])/(sum[j]−sum[k])<2sum[i]

这不就是斜率优化么?

用队列维护一下就行了。

继续分析会发现应该维护单调递增的斜率,也就是维护一个下凸壳。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 50005
using namespace std;
inline ll read(){
    ll ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
int n,hd,tl,q[N];
ll L,sum[N],f[N];
inline ll gety(int i,int j){return f[i]-f[j]+sum[i]*sum[i]-sum[j]*sum[j];}
inline ll getx(int i,int j){return sum[i]-sum[j];}
inline double slope(int i,int j){return 1.0*gety(i,j)/getx(i,j);}
int main(){
    n=read(),L=read()+1,hd=tl=1;
    for(int i=1;i<=n;++i)sum[i]=sum[i-1]+read();
    for(int i=1;i<=n;++i){
        sum[i]+=i;
        while(hd<tl&&slope(q[hd+1],q[hd])<=2*(sum[i]-L))++hd;
        f[i]=f[q[hd]]+(sum[i]-L-sum[q[hd]])*(sum[i]-L-sum[q[hd]]);
        while(hd<tl&&slope(q[tl],q[tl-1])>slope(i,q[tl]))--tl;
        q[++tl]=i;
    }
    cout<<f[n];
    return 0;
}

2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  4. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  5. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  7. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  8. bzoj1010: [HNOI2008]玩具装箱toy——斜率优化

    方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...

  9. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

随机推荐

  1. plsql 执行批量文件

    plsql 执行批量文件 plsql>command window @c:\a.sql;@c:\b.sql;@c:\c.sql;

  2. JAVA学习(七)__Spring的@Autowired注入规则

    @Autowired 默认是按照byType进行注入的,但是当byType方式找到了多个符合的bean,又是怎么处理的? 经过一些代码的测试,我发现,Autowired默认先按byType,如果发现找 ...

  3. python处理分隔大文件

    4个.sql格式的文件,2G大小,直接插入mysql数据中,文件太大了,导入不进去. 太大的文件用python处理也很麻烦,处理不了,只能先分隔成小文件处理. 文件中数据格式:其中values里面的数 ...

  4. str和repr的区别(转)

    Python打印值的时候会保持该值在python代码中的状态,不是用户所希望看到的状态.而使用print打印值则不一样,print打印出来的值是用户所希望看到的状态. 例如: >>> ...

  5. javascript中的二维数组

    要创建一个二位数组我们脑子里第一个出现的就是 var arr=[][]; 但是在javascript这样是会报错的,要在javascrip中创建一个二位数组对象方法如下 方法一     直接把数组写出 ...

  6. Null Hypothesis and Alternate Hypothesis

    1.Null Hypothesis Overview 零假设,H0是普遍接受的事实;这与备择假设(alternate hypothesis)正好相反.研究人员努力否定.驳斥零假设.研究人员提出了另一种 ...

  7. 在Ubuntu上安装微信

    1) 从https://github.com/geeeeeeeeek/electronic-wechat/releases地址中下载linux-x64.tar.gz文件到/opt/wechat文件夹 ...

  8. rsa 公钥 私钥

    如果用于加密解密,那就是用公钥加密私钥解密(仅你可读但别人不可读,任何人都可写)如果用于证书验证,那就是用私钥加密公钥解密(仅你可写但别人不可写,任何人都可读) 最后,RSA的公钥.私钥是互相对应的. ...

  9. Mo2C-tag

    记者今天从中国科学院金属研究所获悉,该所沈阳材料科学国家(联合)实验室先进炭材料研究部任文才研究组在大尺寸高质量二维过渡族金属碳化物晶体的制备与物性研究方面取得了重要突破.相关成果日前在<自然— ...

  10. 132. Palindrome Partitioning II (String; DP)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...