题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183

题意:中文题啦~

思路:dp

用dp[i][j]表示从第一个字符开始,长度分别为i, j的两个字符串的编辑距离;

那么我们很容易能想到初始化为:dp[0][j]=j, dp[i][0]=i;

对于dp[i][j](其是a[0...i-1], b[0...j-1]的编辑距离),我们可以由三种情况得到:

1. 假设我们已经知道了 dp[i-1][j] 即 a[0...i-2], b[0...j-1]的编辑距离,那么我们只要往a[0...i-2]中再添加一个字符就能得到a[0...i-1], 所以dp[i][j]=dp[i-1][j]+1;

2. 假设我们已经知道了 dp[i][j-1] 即 a[0...i-1], b[0...j-2]的编辑距离,那么我们只要往b[0...j-2]中再添加一个字符就能得到b[0...j-1], 所以dp[i][j]=dp[i][j-1]+1;

3.1. 假设我们已经知道了 dp[i-1][j-1] 即 a[0...i-2], b[0...j-2]的编辑距离,如果a[i-1]=b[j-1], 那么dp[i][j]=dp[i-1][j-1], 如果a[i-1]!=b[j-1],那么我们需要改变a[i-1]

使其等于b[j-1],所以dp[i][j]=dp[i-1][j-1]+1;

所以我们得到状态转移方程式 :dp[i][j]=min(dp[i-1][j-1]+(a[i-1]==b[j-1]?0:1), min(dp[i-1][j]+1, dp[i][j-1]+1));

代码:

 #include <bits/stdc++.h>
#define MAXN 1010
using namespace std; int dp[MAXN][MAXN]; //dp[i][j]表示从第一个字符开始,长度分别为i, j的两个字符串的编辑距离
char a[MAXN], b[MAXN]; int main(void){
scanf("%s%s", a, b);
int lena=strlen(a), lenb=strlen(b);
for(int i=; i<=lena; i++){ //初始化
dp[i][]=i;
}
for(int i=; i<=lenb; i++){ //初始化
dp[][i]=i;
}
for(int i=; i<=lena; i++){
for(int j=; j<=lenb; j++){
dp[i][j]=min(dp[i-][j-]+(a[i-]==b[j-]?:), min(dp[i-][j]+, dp[i][j-]+));
}
}
printf("%d\n", dp[lena][lenb]);
return ;
}

51nod1183(Edit Distance)的更多相关文章

  1. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  2. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  3. Edit Distance

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  4. 编辑距离——Edit Distance

    编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...

  5. LintCode Edit Distance

    LintCode Edit Distance Given two words word1 and word2, find the minimum number of steps required to ...

  6. stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)

    I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...

  7. [UCSD白板题] Compute the Edit Distance Between Two Strings

    Problem Introduction The edit distinct between two strings is the minimum number of insertions, dele ...

  8. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

  9. One Edit Distance

    Given two strings S and T, determine if they are both one edit distance apart. 分析:https://segmentfau ...

随机推荐

  1. JAVA发展史

    1990年年末,Sun 公司预料嵌入式系统在未来家用电器领域大显身手,于是Sun公司成立了一个由James Gosling 领导的"Gren计划"(由于C++和可用的API在某些方 ...

  2. PHP读取大文件实践

    ## 使用PHP分析超大的日志文件 如何使用php读取超过10G的文件,这个是今年四月份去一家公司面试时,面试官出的一道题目.因为工作经验不足,所以答的不好,当时也说了使用文件指针逐行读取,只是不知道 ...

  3. nandflash的读写(2440)

    说明: 根据物理结构上的区别 , NandFlash主要分为如下两类:1)•SLC (Single Level Cell): 单层式存储2)•MLC (Multi Level Cell): 多层式存储 ...

  4. 统计单词数(WordCount)

    1.首先新建两个文件夹: 往文件夹添加内容: 2.启动hadoop-查看是否启动成功. 3.先对nameNode进行初始化. 4.查看hadoop下面有哪些文件. 5.在hadoop目录下创建inpu ...

  5. Sonar安装配置

    https://www.sonarqube.org/downloads/ 下载sonar.当前版本为6.2 解压压缩包,进行配置: 修改sonarqube-6.2\conf\sonar.propert ...

  6. mysql-开启慢查询&所有操作记录日志

    在运营网站的过程中,可能会遇到网站突然变慢的问题,一般情况下和 MySQL 慢有关系,可以通过开启慢查询,找到影响效率的 SQL ,然后采取相应的措施.下面介绍一下如何开启慢查询: 1.开启慢查询 找 ...

  7. asp.net core 如何在Controller获取配置文件的值

    场景:我们会把一些配置信息,写在配置文件文件中,便于我们修改和配置.在之前的asp.net 中可以通过ConfigurationManger来获取web.config里面的配置.在.net core ...

  8. PostgreSQL数据库中的常见错误

    转载以作参考. 错误1 FATAL: connection limit exceeded for non-superusers 原因:非超级用户的连接数(max_connections - super ...

  9. Java的输入方式总结

    写java代码的时候,经常会遇到的情况就是输入输错了怎么办?大部分想的是用一个if判断,但是用if判断的话我们就无法让用户再次输入,因为if语句程序执行后就会直接退出程序.因此要想实现循环就要用whi ...

  10. runas/cpau/lsrunase使用小结(以管理员运行指定程序)

    企业环境中,为了安全起见一般都没有赋予域用户或者企业的PC客户端用户管理员权限. 但偶尔会有个别的程序一定需要管理员身份才能执行,如财务某些程序或专业的应用程序.那么如何不赋予用户管理员权限及密码但又 ...