扩展中国剩余定理(扩展CRT)详解
今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面)
中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$。
正常的$CRT$有一个微小的要求,就是$\forall i,j (m_i,m_j)=1$。
在某些情况下,这个式子无法被满足,这个时候就要用扩展$CRT$来求解了。
我们先假设我们只有两条方程要被求解,它们分别是:
$\begin{cases} x\equiv c_1 \pmod{m_1}\\x\equiv c_2 \pmod{m_2}\end{cases}$
我们考虑将同余去掉,就变成了:
$\begin{cases} x= c_1+m_1k_1\\x= c_2+m_2k_2\end{cases}$
联立一波,得:
$c_1+m_1k_1=c_2+m_2k_2$
$m_1k_1=(c_2-c_1)+m_2k_2$
若该方程存在解,则有$(m1,m2)|(c_2-c_1)$,否则无解
下面令$d=(m1,m2)$。
我们对等式两边全部除以$d$,得:
$\dfrac{m_1}{d}k_1=\dfrac{c_2-c_1}{d}+\dfrac{m_2}{d}k_2$
经过简单变式,得:
$\dfrac{m_1}{d}k_1\equiv \dfrac{c_2-c_1}{d} \pmod{\dfrac{m_2}{d}}$
没错,我们成功消掉了$k_2$
我们将$\dfrac{m_1}{d}$移项到等式右侧,得:
$k_1 \equiv inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d} \pmod{\dfrac{m_2}{d}}$
其中$inv(x,y)$表示模$y意$义下$x$的乘法逆元
重新将该式子变回等式,得:
$k_1 = inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d} + y\dfrac{m_2}{d}$
该式子已经化简到尽了,考虑重新代入回最初的式子。
将$k_1$代入$x=c_1+m_1k$中,得:
$x\equiv inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d}\times m1 +c_1 \pmod{\dfrac{m_1m_2}{d}}$
至此,求两条式子的扩展$CRT$已经讲完了
如果方程有多条怎么办:我们做$n-1$次的两条式子的$CRT$合并就可以了。
扩展中国剩余定理(扩展CRT)详解的更多相关文章
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 中国剩余定理(crt)和扩展中国剩余定理(excrt)
数论守门员二号 =.= 中国剩余定理: 1.一次同余方程组: 一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组 中国剩余定理的主要用途是解一次同余方程组,其中m ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
- Han Xin and His Troops(扩展中国剩余定理 Python版)
Han Xin and His Troops(扩展中国剩余定理 Python版) 题目来源:2019牛客暑期多校训练营(第十场) D - Han Xin and His Troops 题意: 看标 ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
- 学习笔记 - 中国剩余定理&扩展中国剩余定理
中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...
随机推荐
- python的介绍和及基本的使用
一 什么是计算机 1 计算机就是由一堆硬件组成的一个机器. 2 硬件的分类: CPU:犹如人类的大脑,运行着需要运行的程序. 内存:将 CPU要运行的内容从硬盘中读取出来,然后CPU在内存里拿内容,只 ...
- 一致性哈希Java源码分析
首次接触一致性哈希是在学习memcached的时候,为了解决分布式服务器的负载均衡或者说选路的问题,一致性哈希算法不仅能够使memcached服务器被选中的概率(数据分布)更加均匀,而且使得服务器的增 ...
- BeautifulSoup基本步骤
http://blog.csdn.net/kikaylee/article/details/56841789 ’BeautifulSoup是Python的一个库,最主要的功能就是从网页爬取我们需要的数 ...
- SPSS-多重响应-频率和交叉表案例分析(问卷调查分析)
在10.1休假前,希望跟大家讨论一下SPSS-多重响应--频率和交叉表分析,希望大家能够多提点提点 在云南电信网上营业厅做了一个关于“客户不使用电信3g业务的原因有哪些的问卷调查,问题所示: 这份问卷 ...
- SPSS—回归—曲线估计方程案例解析
上一节介绍了线性回归,虽然线性回归能够满足大部分的数据分析的要求,但是,线性回归并不是对所有的问题都适用, 因为有时候自变量和因变量是通过一个已知或未知的非线性函数关系相联系的,如果通过函数转换,将关 ...
- 测试setsockopt设置超时是否生效代码
// 测试setsockopt设置超时是否生效代码 #include <arpa/inet.h> #include <netinet/in.h> #include <st ...
- Android+PHP开发最佳实践
本书以一个完整的微博应用项目实例为主线,由浅入深地讲解了Android客户端开发和PHP服务端开发的思路和技巧.从前期的产品设计.架构设计,到客户端和服务器的编码实现,再到性能测试和系统优化,以及最后 ...
- Ubuntu16.04安装PostgreSQL并使用pgadmin3管理数据库_图文详解
版权声明:本文地址http://blog.csdn.net/caib1109/article/details/51582663 欢迎非商业目的的转载, 作者保留一切权利 apt安装postgresql ...
- linux环境下(非UI操作)所有软件的安装与卸载总结
UI界面的软件管理 linux下的软件一般都是经过压缩的,主要的格式有这几种:rpm.tar.tar.gz.tgz等.所以首先拿到软件后第一件事就是解压缩. 在xwindow下以rpm格式的软件安装比 ...
- hdu 4983 欧拉函数
http://acm.hdu.edu.cn/showproblem.php?pid=4983 求有多少对元组满足题目中的公式. 对于K=1的情况,等价于gcd(A, N) * gcd(B, N) = ...